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Audience Participation: GMD Background AF‘ TEXAS A&M

UNIVY ERSIT X

« Using the “Raise Hand” button

at the bottom of your

Raise hand

screen, please raise your hand if you:

Have at least a rudimentary knowledge of geomagnetic disturbances
(GMDs), geomagnetically induced currents (GICs) and their effect on the
grid

Conducted a TPL-007 study (leave your hands up)

Assisted with a TPL-007 study (leave your hands up)

Have read the results of a TPL-007 study, or any other GMD assessment
study (leave your hands up)

Have read at least parts of the NERC TPL-007 standard (leave your hands
up)

Know what NERC TPL-007 is? (you can put your hands down)

Attended my GMD webinar a year ago (if you remember)
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* Modeling
« Data
« Simulations

* Mitigation




GMD Analysis: TPL-007 M | TEXAS A&M
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* Modeling
 Geocoordinates, and additional modeling parameters for transmission
lines, transformers and substations

« Data

e E-field information

e Simulations

e Steady State “worst case”

e Thermal and Harmonics analysis if needed
* Mitigation

 If needed




GMD Research at A&M M | TEXAS A&M
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* Modeling
 Geocoordinates, and additional modeling parameters for transmission
lines, transformers and substations
 Transient stability models
* Transformer thermal models

« Data

* Spatiotemporally varying e-field waveforms
 Magnetic field waveforms
 Earth conductivity




GMD Research at A&M AJM | TEXAS A&M

« Simulations
 Power flow time step simulation
 Transient stability
* Integrated harmonics and thermal analysis (with EPRI)

e (GIC state estimation

* Mitigation
* Ongoing work to determine best strategies to mitigate GICs

GIC blockers

Topology changes
Relaying changes to accommodate harmonics




Overview it | TEXAS A&M
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* Introduction: What are Geomagnetic Disturbances?
« Geomagnetically Induced Current State Estimation
» |ntegrated assessment tool in collaboration with EPRI




GMD Short Course: March 18-19, 2025 A | TEXAS A&M
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* Location: Texas A&M University RELLIS Campus
* |nstructors: Tom Overbye, Bob Arritt, Jonathan Snodgrass

* This webinar gives a brief introduction to the topics
covered in the GMD short course

* https://epg.engr.tamu.edu/electric-grid-impacts-of-
geomagnetic-disturbances/
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What is Space Weather? A i

 Like Earth, the sun has its own weather

 The solar cycle is around 11 years, compared to earth’s
weather cycle of 12 months

* |t has a continuous stream of plasma called the solar wind
* There are periodic releases of billions of tons of matter in

what are called coronal mass ejections (CMEs)

 When directed towards Earth, they can cause large magnetic storms
in the space environment around Earth (the magnetosphere and the
upper atmosphere)




Geomagnetic Disturbances AM | TEXAS ASM
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A Geomagnetic Disturbance (GMD) occurs when a CME
(COrOna| MaSS EJeCt|On) h|ts earth Scale | Descriptor |Effect on Power systems Avg. Frequency

(1 cycle = 11 years)

Extreme |Widespread voltage control 4 days per cycle
problems and protective system

u . problems can occur, some grid
A G M D Seve rlty IS from G 1 -G5 zystems may experience complete
collapse or blackouts. Transformers
may experience damage.

Severe Possible widespread voltage control |60 days per cycle
problems and some protective
systems will mistakenly trip out key
assets from the grid.

G3 | Strong Voltage corrections may be required,| 130 days per cycle
false alarms triggered on some
protection devices.

G2 Moderate |High-latitude power systems may 360 days per cycle

Energetic — - -» experience voltage alarms, long-
Charged Particles \ .
duration storms may cause
Heliosphere lanosphere transformer damage.
Gl Minor Weak power grid fluctuations can 900 days per cycle
oCCur.

https://www.naes.com/news/what-is-a-geomagnetic-disturbance-and-how-can-it-affect-the-power- ) .
grid/#:~:text=Solar%20flares %20followed%20by%20CMEs,orientation%200f%20the % 20magnetic%20field. https://www.swpc.noaa.gov/noaa-scales-explanation




Effects of Space Weather A | TEXAS A&M
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Sl “protons
Coronal mass ejections B e
R Spacecraft
(CME’s) result from solar w_ s
o Reric Currents Scintillation i i
a Ct VI ty & N on Avionics

Geomagnetically

High-energy charged particles | e |
interact with Earth’s magnetic | B SRRl g
field Ve SaLee | o

REv .o

; Induced Effects in o
(¥ sdng®® Submarine Cables e
IM‘/ L

Telluric Currents in Pipelines

11

Image Source: https://www.nasa.gov/mission pages/sunearth/spaceweather/index.html
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What causes GICs?

TEXAS A&M

UNIVY ERSIT X

A |

S 3
: *-.-il f{a 1. CME is
Vo - ejected from
¢ =
i {E: the Sun
y I.Il,ul'I::I:_'l.
;
2. Earth
experiences
rapidly
changing
magnetic
field

5. GICs
arise in long
conductors

. Electric
field is
induced at
surface

<. Magnetic
field interacts
with Earth
conductivity

GICs (<0.1 Hz)
flow through
transmission lines,
grounded

transformers, and
the Earth

Electric fields
are vectors, I.e.
have magnitude
and direction

Image Source: Dr. Jennifer Gannon, CPI



Geomagnetically Induced Currents £Ju | TEXAS A&M

A GMD causes Geomagnetically
Induced Currents (GIC)

GIC are low-frequency, quasi-DC

GICS_ can saturafte transformers,
creating harmonics

H_armonics can cause nuisance
tripping of relays

Harmonics are modeled by
increasing the VAR losses of the
transformer

Increased VAR losses can cause
voltage instability

UNIVY ERSIT X

g 'What-Céuses’Geoﬁiégne’tici'ndu'c._ed C_urrer-}t(Gl'C)?

https://www.dynamicratings.com/solutions/geomagnetic-induced-current-monitoring/




G5 Storm, May 10t", 2024 i | TEXAS A&M
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* A G5 storm occurred from
May 10-11, 2024

* This was the largest storm
to occur since 2000

« Several relays tripped due
to harmonics

* Analysis is still ongoing
from this storm

Photo of Aurora Borealis in
College Station, Tx on May 10th, 2024
Photo Credit: Rhett Guthrie




G5 Storm, May 10th, 2024; E-Field ZJu | TEXAS A&M
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Youtube Link to be added
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What are the impacts? i | TEXAS ASM

« Superimposition of DC GICs on
normal AC grid currents can push

DC causes Part — Cycle, Semi — Saturation of the

transformer flux into saturation for a e i |
half-cycle @
+ This can cause harmonics

« Why? g o

* Fourier series: all waveforms can >
be represented by a sum of sine ~ EEEETETE—
and cosine waves T o e R

« Square wave: - N ABB

. 4 - 1  (nnx
X)= — —smn|——|.
/@ T Z M ( L )

n=1,35....
16




What are the impacts? KM | TEXAS A&M

* In the positive sequence (e.g., PF and | |
TS) these harmonics can be ([:);“}:auses Part — Cycle, Semi — Saturation of the
represented by increased reactive »
power losses on the transformer

 Why?
e Z; = jwlL so transformer impedance
iIncreases with frequency

1
Iy !
1|T|DC

* Harmonics can also cause relays to trip I e
devices such as SVCs s core from fuy saurating
1 . o 16,20 N A DN
¢ ZC — . SO CapaCItorS are a IOW RS FAIPEP
JwC

impedance path for harmonics
« Transformer heating and damage 5




What are the impacts? A | TEXAS A&M
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March 13, 1989 Geomagnetic Disturbance

« Two major possible impacts i

Summary automatic rejection of the generation of two

La Grande 4 gencrating units

_— Volta e CO”a Se due to' Just before 0245 EST on March 13, 1989, an
- exceptionally inlense magnetic storm caused the Three other 735kV lines of the La Grande

shutdown of seven static compensators om the transmission network tripped next, and faults
. La Grande nctwork, This equipment is essential for occurred in  two  single-phase units of two
o I ncreased tra nSfO rmer reaCtIVe |Osses control of the Hydro-Ouébec grid and its Joss La Grande 4 transformers and in the surge arrestor

caused voltage to drop, frequency to increase, and of a shunt reactor at Nemiscau substation. The
the resultant instability caused the tripping of the remaining line of the La Grande transmission

. Tr|pp|ng of reactive power Support devices Ls Grande ransmission lines network tripped next.  Thus, the La Grande

network was separated completely from the Hydro-
The rest of the Hydro-Ouébec system, supplied by Québec transmission nctwork.

— Transformer damage (including GSUSs) e ol s of (b o o B Wih spraion of te L Grunde sstorh

« A GMD event in March 1989 caused
a major blackout in Quebec

— 7 SVCs tripped within 59 seconds, causing
voltage collapse 25 seconds later.
6 million people without power for 9 hours.

— In US: New York Power lost 150 MW, - -
New England Power Pool lost 1,410 MW, service to 96 electrical utilities in New England
was interrupted. Over 200 grid issues problems erupted within minutes of the start of the
storm. Luckily, there were no blackouts.

18




Texas A&M GMD Work it | TEXAS A&M
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* Developed synthetic but realistic large scale test
systems, which include GMD parameters

» https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
* Real-time GIC Monitoring and Control Environment

* Texas Magnetometer Network

« GIC “State Estimation” (GIC Estimation)

 Interactive GMD simulations and scenarios for
visualization, control, and mitigation applications



https://electricgrids.engr.tamu.edu/electric-grid-test-cases/

Texas Magnetometer Network AM | TEXAS A&M
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Amarillo 6 magnetometers installed by
" A Texas A&M and Computational
Physics Inc. (CPlI)

— Completed Dec 2019

Stephenville paias OVerton — Building on the results of our NSF
e @ Q project design
OdO $e 3 * Locations
essd es K Q Beaumont — 5 Texas A&M AgriLife Research
Audiin o sites (Amarillo, Beaumont,
\l\ f Houston Beeville, Overton, Stephenville)
Bhe A7 N TB&ville — 1 local on RELLIS Campus (Bryan,
.4 \\_ 0 TX)
uia N * 1 mag installed under prior NSF
8 project at Odessa




Online Dashboard it | TEXAS AsM
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TAMU RE”IS 10 May 2024 05:00:00 - 11 May 2024 04:59:59 @ Historical Mode v | X
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TEXAS A&M UNIVERSITY

Hypothesis Engineering

« GIC measurement devices can
be used to estimate the electric .

field. \B//

* This is done through a weighted
least squares state estimation




Weighted Least Squared (WLS) State AE

Estimation Engineering

« State estimation is traditionally used for estimating voltages
throughout the electrical grid.

* The relationship between GICs and a semi-DC electric field is
linear, so a linear state estimation can be used.

« WLS Linear State Estimation:
-1
x=(h"TR 'h) "hTR 1z
Zz: measurements — GICs
X: states — electric field

h: of the relationship between measurements and states
 R: measurement error




Electric Field to GICs AM | Engincering

I, =®,G 'HE
« I.,: Geomagnetically Induced Currents

« @ : Transformer conductances, altered to include
different transformer types

« G~ 1: Line conductance values that include substation
grounding resistances

« H: Matrix that depicts the length, resistance, and
orientation of the lines in the North/East direction.

 FE: Electric Field




Overview of Electric Field State
AlM

Engineering

Estimator

 Estimates the Northern and Eastern electric field
magnitudes for five different zones across Texas.

« Ultilizes transmission line and transformer data to map GICs to
electric fields.

* Determines the number of GIC measurements within
each zone required to accurately estimate the electric

field.
GIC State Electric FiJeIJdJ*
Measurements BXSdTaar-180]8




Same Electric Field Without Noise AIM | Engineering

GIC Neutrals Without Noise Estimating Same Electric Fields
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Same Electric Field With Noise AIM | Engineering

GIC Neutrals With Noise Estimating Same Electric Fields
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Different Electric Field Without Noise KM | Engineering

Engineering

GIC Neutrals Without Noise Estimating Diferent Electric Fields
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Different Electric Field With Noise AIM | Engineering
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GIC Neutrals With Noise Estimating Different Electric Fields
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Results Summary AIM | Engineering

* Three measurements are required regardless for
estimating the electric field from GIC measurements.

* Eight measurements are required to ensure an error of
less than 0.05 V/m over 1000 iterations when noise is
added to the measurements.

« Changing the direction/magnitude of the electric field does not
affect the estimation to a significant degree.

« Some zones may require more measurements to acquire the
same level of accuracy as the other zones regardless of the
electric field.
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Integrated Assessment Tool

= EPRI has integrated GIC modeling tools for
GMD vulnerability assessments.
(GMDToolINT)

= Integrated Platforms include:

B2E Tool (Earth Conductivity E-Field solver)
ETTM (Transformer Thermal Module),
GICharm (GIC-harmonic Analysis Tool), and

GIC Power flow (PowerWorld GMD Vulnerability
Software Platform)

Integrated Tool includes relevant improvements
= GIC unbalance and improved responses

The new source code, executables, examples
and documentation are available on a PNNL
open-source software site, and GICharm and
ETTM are available on EPRI-member site with
access provided.

Search gmdtoolint-master

Fa

A Mame Date modified

Type Size

build
dist
doc

gmdtoolint

[ v v ¥

gmdtoolint.egg-info

E setup

GMDtoolint
B2ECalc, PowerWorld ESA, ETTM and GICharm tool integration
DRAFT MANUAL

© 2023 Electric Power Research Institute, Inc. All rights reserved.
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Model Integration

= Integration of GIC tools

Asymptotic Response
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Integration tool overview

= Tool integrates functionalities of B2eCalc, PowerWorld ESA, ETTM and ETTM: Transformer Thermal Analysis
GICHarm.

@ Mo

L | |

Test Data Cunvo Fitting Rosults

Asymptotic Response. Structural Parts Asymptotic Respor

= Tool manual indicates installation instructions, module functions and input §oiEi

data file description.

10 [K]

.

B2ECalc: E-field computation PowerWorld: GIC calculations
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GMD Short Course: March 18-19, 2025 A | TEXAS A&M

UNIVY ERSIT X

* Location: Texas A&M University RELLIS Campus
* |nstructors: Tom Overbye, Bob Arritt, Jonathan Snodgrass

* This webinar gives a brief introduction to the topics
covered in the GMD short course

* https://epg.engr.tamu.edu/electric-grid-impacts-of-
geomagnetic-disturbances/

34
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Thank you! Tt | TEXAS AsM

U N SIT Ys

Questions?
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