Characteristics of Digital Algorithms

- **Domain**
 - Time
 - Frequency

- **Model**
 - Lumped Parameter
 - Traveling Wave

- **Result**
 - Distance to the fault
 - Direction of the fault
 - Place of the fault

- **Model Form**
 - Differential Equation

- **Residual**
 - Neglected
 - Optimized

- **Conversion to digital form (derivative)**
 - Approximate Integrals
 - Approximate Derivative
 - Correlation
 - Convolution

- **Signal Processing Techniques**
 - Non Recursive
 - Recursive

- **Optimization Techniques**
 - MLSF Technique
 - Linear Estimation

- **Optimized**

- **Neglected**

©2014 Mladen Kezunovic. All rights reserved
Digital Algorithms

• Lumped Parameter Model
 - Time Domain Approach
 - Frequency Domain Approach

• Traveling Wave Model
 - Directional Algorithm
 - Distance Algorithm
 - Differential Algorithm
Digital Algorithms: Line Models

1. Lumped Parameter Model

- Time Domain Model (Signals are functions of time)

Example:
\[u(t) = Ri(t) + L \frac{di(t)}{dt} \]

- Frequency Domain Model
 (Signals are represented with transforms)

Example:
\[v(jw) = RI(jw) + jwL \cdot I(jw) \]

Question: What is the distance \(x \) between the relay and the fault? (Distance Algorithms)

\[x = \frac{L}{l} \]
Lumped Parameter Model
Time Domain Approach

Model Equation: \[u(t) = Ri(t) + L \frac{di(t)}{dt} + e(t) \]

• Treatment of the Derivative Term:
 - Approximation Using Samples
 - Integration of the Equation Using Samples

• Treatment of the Residual Term
 - Residual Term is neglected
 - Influence of the Residual Term is Minimized

©2014 Mladen Kezunovic. All rights reserved
Treatment of the Derivative

\[u(t) = Ri(t) + L \frac{di(t)}{dt} + e(t) \]

Problem: Samples of \(u(t) \) and \(i(t) \) can be measured, but for \(\frac{di(t)}{dt} \) is not possible.

Question: How to approximate \(\frac{di(t)}{dt} \) at \(t = k\Delta t \) with samples of \(i(t) \) denoted \(i_k \)
Approximations of current derivative

Backward: \[\frac{i_k - i_{k-1}}{\Delta t} \]

Forward: \[\frac{i_{k+1} - i_k}{\Delta t} \]

Middle: \[\frac{i_{k+1} - i_{k-1}}{2\Delta t} \]
Approximations of current derivative
(continued)

How was it derived?

\[i_k = A \sin(kw_0 \Delta t + \phi) \]

\[i_{k-1} = A \sin(kw_0 \Delta t - w_0 \Delta t + \phi) = \]

\[A \sin(kw_0 \Delta t + \phi) \cos(w_0 \Delta t) - A \sin(kw_0 \Delta t + \phi) \sin(w_0 \Delta t) \]

\[\frac{di(t)}{dt} = w_0 A \cos(kw_0 \delta t + \phi) = \frac{i_k \cos(w_0 \Delta t) - i_{k-1}}{\sin(w_0 \Delta t)} w_0 \]

If \(w_0 \Delta t \to 0 \), we get backward approximatuion
Integration of the Differential Equation

Model Equation: \[u(t) = Ri(t) + L \frac{di(t)}{dt} + e(t) \]

\[
\int_{t_1}^{t_2} u(t) dt = R \int_{t_1}^{t_2} i(t) dt + L \left[i(t_2) - i(t_1) \right] + \int_{t_1}^{t_2} e(t) dt
\]

Problem: How to approximate \(\int_{t_1}^{t_2} x(t) dt \) with samples \(x_k \)?

©2014 Mladen Kezunovic. All rights reserved
General Lumped Parameter Digital Model of the Line

\[J^u_m = R \cdot J^i_m + L \cdot J^{i'}_m + J^e_m \]

\[J^u_m, J^i_m, J^{i'}_m \] Linear Combination of Delayed Signal Samples

\[J^e_m \] Immeasurable Residual Term

\[m \] Present moment

Example 1: Use of forward approximation

\[u_m = R \cdot i_m + L \frac{i_m - i_{m-1}}{\Delta t} + e_m \]

©2014 Mladen Kezunovic. All rights reserved
Examples 2: Use of approximate integration

\[
\sum_{k=m-N}^{m-1} u_k \Delta t = R \cdot \sum_{k=m_N}^{m-1} i_k \Delta t + L \left[i_m - i_{m-N} \right] + \sum_{k=m_N}^{m-1} e_k \Delta t
\]

Problem: How to treat the residual term?
Treatment of Residual Term

- Direct Solution (Ignore The Residual Term)

Calculate $J_{m1}^u, J_{m1}^i, J_{m1}^{i'}$ for two moments $m1$ and $m2$, and then solve for estimates \hat{R} and \hat{L} two equations:

$$J_{m1}^u = \hat{R} \cdot J_{m1}^i + \hat{L} \cdot J_{m1}^{i'}$$

$$J_{m2}^u = \hat{R} \cdot J_{m2}^i + \hat{L} \cdot J_{m2}^{i'}$$
• Minimum Least Square Technique

- Calculate \(m_1, m_2, \ldots, m_r \)
- Find \(\hat{R} \) and \(\hat{L} \) that minimize

\[
\sum_{m=m_1}^{m_r} (J^e_m)^2
\]

\[
J^e_m = J^u_m - \hat{R}J^i_m + \hat{L}J^{i'}_m
\]

\(J^u_m, J^i_m, J^{i'}_m \) Linear Combination of Delayed Signal Samples
\(J^e_m \) Immeasurable Residual Term
\(m \) Present moment
Time Domain Approach Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Ref. No.</th>
<th>Elimination of di/dt term</th>
<th>Treat of $e(t)$ term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Samples</td>
<td>Integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backward</td>
<td>Forward</td>
</tr>
<tr>
<td>Smolinski</td>
<td>1</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Bornard, Bastide</td>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Breingan, er. a.</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McInnes, Morrison</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponclet</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranjbar Cory</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frequency Domain Approach

• Parameter estimation with no optimization:
 - Signal Contains Only the First Harmonics
 - Signal Contains Other Harmonics

• Parameter Estimation With Optimization
 - Least Square Fit
 - Linear Estimation
 - Kalman Filtering
Lumped Parameter Model

Frequency Domain Approach

• Initial Model:

\[u(t) = V \cos(w_0 t + \phi) + \sum_k C^u_k f^u_k + n_v(t) \]
\[i(t) = I \cos(w_0 t + \varphi) + \sum_k C^i_k f^i_k + n_i(t) \]

Where:

- \(C^u_k, C^i_k, V, I, \phi, \gamma \) - unknown coefficients (Signal Parameters)
- \(f^u_k(t), f^i_k(t) \) - known functions representing higher harmonics and transients
- \(n_u(t), n_i(t) \) - noise terms
Lumped Parameter Model
Frequency Domain Approach (continued)

• Impedance is calculated as:

\[z = R + jw_0L = \frac{V}{I} \cos(\phi - \varphi) + j \frac{V}{I} \sin(\phi - \varphi) \]

• Signal Parameters to be estimated are:

\[V, I, \phi, \gamma \]

©2014 Mladen Kezunovic. All rights reserved
Two Approaches to the Signal Parameter Estimation

1. The noise term and some signal components are neglected. Parameters are obtained by correlation and convolution signals.

 Examples of Simplified Models:
 - The signal contains the fundamental harmonic only
 - The signal is represented with Fourier series having a finite number of higher harmonics

2. The estimate of the parameters are found so that they are optimal in some sense.

 Examples of Techniques:
 - Least Square Method
 - Linear Estimation
 - Kalman Filtering
The output $y(t)$ is equal to the area of the window.

$$y_n \approx \sum_{k=n-N}^{n} x_{n-k} W_{n-k} \Delta t$$
Signal Convolution

\[y_n \equiv \sum_{k=n-N}^{n} x_{n-k} W_k \Delta t \]

The output \(y(t) \) is equal to the area in the window.
Examples of Correlation and Convolution

-Correlation

DIRECT FOURIER ANALYSIS

• $W(t)$ are $\sin(w_0 t)$ and $\cos(w_0 t)$. Length of window is equal to the period T or a half a period $T/2$.

INDIRECT FOURIER ANALYSIS

• $W(t)$ are Haar or Walsh functions. The output is used to find Fourier coefficients.

CORRELATION FUNCTION METHOD

• $W(t)$ is current or voltage. The length of the window is T or $T/2$.

-Convolution

Most commonly the weight functions is fundamental frequency sinusoid
Fourier Based Methods

- Signal Model: $x(t) = \sum_{m=0}^{r} a_m \cos mwt + \sum_{m=1}^{r} b_m \sin mwt$

$$a_1 = X_R \quad b_1 = X_I$$

Example:

Fourier decomposition of a square function y_s: 1st, 3rd and 5th harmonics after summarizing generate y' (dotted line)
Fourier Based Methods (continued)

• Direct Fourier Model:
 \[X_R(t_1) = \frac{1}{T} \int_{t_1-T}^{t_2} x(t) \cos(\omega t) dt \]
 \[X_I(t_1) = \frac{1}{T} \int_{t_1-T}^{t_2} x(t) \sin(\omega t) dt \]

• Indirect Fourier Model:
 \[x(t) = \sum_{i=1}^{M} k_i f_i(t) \]

 \(f_i \) – set of orthogonal functions:
 • Walsh
 • Haar

Find \(k_i \) by correlation then express \(X_R \) and \(X_I \) using \(k_i \)
Example of Indirect Fourier Analysis

Walsh Function Matrix

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Walsh Functions

\[W_s^0(t) \]
\[W_s^1(t) \]
\[W_s^2(t) \]
\[W_s^3(t) \]
\[W_s^4(t) \]
\[W_s^5(t) \]
\[W_s^6(t) \]
\[W_s^7(t) \]
Walsh Functions (continued)

Orthogonally of Walsh functions:

\[
\int_0^T W_R^k(t) W_P^m(t) \, dt = \begin{cases}
T_0 & m = k \\
0 & m \neq k
\end{cases}
\]

\[R = 2^p \quad p = \text{integer} \]

Approximation with Walsh Functions

\[x(t) \equiv \sum_{k=0}^{R-1} C_R^k W_R^k(t) \]

\[0 \leq t \leq T \]

\[C_R^k = \frac{1}{T} \int_0^{T_0} x(t) W_R^k(t) \, dt \]
Signal Contains Only the First Harmonic

- Signal Model

\[x(t) = X_R \cos(wt) + X_I \sin(wt) \]

- Example

\[
X_R = \frac{x_n \sin(n - 1)\delta - x_{n-1} \sin n\delta}{\sin \delta} \quad \delta = w\Delta t
\]

\[
X_I = \frac{x_{n-1} \cos n\delta - x_n \cos(n - 1)\delta}{\sin \delta}
\]
Signal Contains Only the First Harmonic (continued)

\[R = \frac{U_R I_R + U_I I_I}{I_R^2 + I_I^2} \]

\[= \frac{u_n i_n - u_n i_{n-1} \cos \delta - u_{n-1} i_n \cos \delta + u_{n-1} i_{n-1}^2}{i_n^2 - 2i_n i_{n-1} \cos \delta + i_{n-1}^2} \]

\[\omega_o L = \frac{U_R I_I - U_I I_R}{I_R^2 + I_I^2} \]

\[= -\frac{u_{n-1} i_n \sin \delta - i_{n-1} u_n \sin \delta}{i_n^2 - 2i_n i_{n-1} \cos \delta + i_{n-1}^2} \]
Optimal Parameter Estimation

- Least Square Fit -

• Signal Model

\[x(t) = X_R \cos \omega_0 t + X_I \sin \omega_0 t + \sum_{k=1}^{r} C_k f_k(t) + e(t) \]

• Condition

\[J(X_R, X_I, C_k) = \int_{t=T_0}^{t} e^2(t) dt \text{ minimum} \]

• Calculate values of \(\hat{X}_R \) and \(\hat{X}_I \) from equations:

\[\frac{\partial J}{\partial X_R} = 0 \quad \frac{\partial J}{\partial X_I} = 0 \]

\[\frac{\partial J}{\partial C_k} = 0 \quad k = 1 \ldots r \]
Parameter Estimation with Optimization

-Linear Estimation-

- Signal Model: \(x(t) = X_R \cos w_0 t + X_I \sin w_0 t + \sum_{k=1}^{r} C_k f_k(t) + e(t) \)

- Expression for the estimates:

\[
\hat{X}_R = \int_{t-T_0}^{t} A_R(t)x(t)dt \quad \hat{X}_I = \int_{t-T_0}^{t} A_I(t)x(t)dt
\]

- Problem: Find \(A_R(t) \) and \(A_I(t) \) such that

\[
E\left\{ \hat{X} - X \right\} = 0 \quad \text{and} \quad E\left\{ (\hat{X} - X)^2 \right\} = 0 \quad \text{is minimal}
\]

- Observations:

 - if \(e(t) \) is Gaussian, Linear Estimation becomes the Least Square Fit
 - if \(e(t) \) is Gaussian White Noise, \(f_k(t) \) and \(T_0 = T/2 \), then the technique is equal to Half-Cycle Fourier Transform
Kalman Filtering

- Basic Notes:
 \[
 \begin{bmatrix}
 V(n) \\
 V(n+1)
 \end{bmatrix}
 \quad \text{state estimate}
 \]

- State Equations:
 \[
 \begin{bmatrix}
 V(n+1)
 \end{bmatrix} = \begin{bmatrix}
 P
 \end{bmatrix} \begin{bmatrix}
 V(n)
 \end{bmatrix} + \begin{bmatrix}
 Q
 \end{bmatrix} \Delta V(n)
 \]

- Measurement:
 \[
 \begin{bmatrix}
 V_s(n)
 \end{bmatrix} = \begin{bmatrix}
 C
 \end{bmatrix} \begin{bmatrix}
 V(n)
 \end{bmatrix} + \begin{bmatrix}
 b(n)
 \end{bmatrix}
 \]

 \[
 \Delta V(n), [b(n)] \quad \text{white noises}
 \]
Kalman Filtering (continued)

\(P, Q - \) covariance matrices of \([V(n)]\) and \([\Delta V(n)]\). Depending on components that are anticipated at input, covariance matrices can have different forms:

\[
[P] = [Q] = \begin{bmatrix}
\cos(\omega \Delta T) & -\sin(\omega \Delta T) \\
\sin(\omega \Delta T) & \cos(\omega \Delta T)
\end{bmatrix}
\]

\[
[P] = [Q] = \begin{bmatrix}
\cos(\omega \Delta T) & -\sin(\omega \Delta T) & 0 \\
\sin(\omega \Delta T) & \cos(\omega \Delta T) & 0 \\
0 & 0 & e^{-\lambda t}
\end{bmatrix}
\]

\[
[P] = [Q] = \begin{bmatrix}
\cos(\omega \Delta T) & -\sin(\omega \Delta T) & 0 & 0 \\
\sin(\omega \Delta T) & \cos(\omega \Delta T) & 0 & 0 \\
0 & 0 & \cos(2\omega \Delta T) & -\sin(2\omega \Delta T) \\
0 & 0 & \sin(\omega \Delta T) & \cos(2\omega \Delta T)
\end{bmatrix}
\]

©2014 Mladen Kezunovic. All rights reserved
Kalman Filtering-Recursive Equations (continued)

We calculate in every step new (improved) values of V_k, P_k, C_k starting from the initial values X_0 and P_0

\[
[K(n)] = \frac{[M(n)][C]^T}{[C][M(n)][C]^T + [B]}
\]

\[
[Z(n)] = [I - [K(n)][C]] \cdot [M(n)]
\]

\[
[M(n+1)] = [P][Z(n)][P]^T + [Q][U][Q]^T
\]

\[
[^{\hat{V}}(n)] = [P][^{\hat{V}}(n-1)] + [K(n)][V_S(n) - [C][P][^{\hat{V}}(n-1)]]
\]
Frequency Domain Approach Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Ref No.</th>
<th>No optimization</th>
<th>1(^{st}) harmonic only</th>
<th>Other components in the signal</th>
<th>Optimization</th>
<th>Kalman Filtering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobosh</td>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilbert, Shovlin</td>
<td>8</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann, Morrison</td>
<td>9</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilcrest et al.</td>
<td>10</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Morrison</td>
<td>11</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slemon at. al</td>
<td>12</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carr, Jackson</td>
<td>13</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horton</td>
<td>14</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Srinivasa at. al.</td>
<td>15</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fakruddin at.al.</td>
<td>16</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johns, Martin</td>
<td>17</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiszniewski</td>
<td>18</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hope at. Al.</td>
<td>19</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McLaren at. Al.</td>
<td>20</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweitzer, Flechsig</td>
<td>21</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucklett at. al.</td>
<td>22</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sachdev at. al.</td>
<td>23</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brooks</td>
<td>24</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorp at. al.</td>
<td>25</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toyoda</td>
<td>26</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girgis, Grover</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girgis</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malik, et. al.</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of the Algorithm Properties

• Results should be available in a short time after the fault inception

• Mean should be equal to actual value

• Standard deviation should not be significant
Algorithm Properties

<table>
<thead>
<tr>
<th>Algorithm Characteristics</th>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental harmonic</td>
<td>Theoretically do not influence the results</td>
<td>Some alg. are not sensitive</td>
</tr>
<tr>
<td>Higher harmonic and transients</td>
<td>Sensitive</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Noise term</td>
<td>Sensitivity may be reduced</td>
<td>Sensitivity may be reduced</td>
</tr>
<tr>
<td>Signal measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog signal processing</td>
<td>Imp. response the same for voltages and currents</td>
<td>System function the same for ω_0</td>
</tr>
<tr>
<td>Synchronization required</td>
<td>Optimal sampling freq. likely to exist</td>
<td>Non conclusion about optimal sampling freq.</td>
</tr>
<tr>
<td>Data window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of samples</td>
<td>Either depends on the sampling frequency or is not determined by any particular requirement</td>
<td>Fixed</td>
</tr>
</tbody>
</table>
Class I characteristics

<table>
<thead>
<tr>
<th>Algorithm Characteristics</th>
<th>Class I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elimination $\frac{di}{dt}$ term</td>
</tr>
<tr>
<td></td>
<td>Via samples</td>
</tr>
<tr>
<td>Signal content</td>
<td></td>
</tr>
<tr>
<td>Fundamental harmonic</td>
<td></td>
</tr>
<tr>
<td>Higher harmonic and transients</td>
<td></td>
</tr>
<tr>
<td>Noise term</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Signal measurement</td>
<td></td>
</tr>
<tr>
<td>Analog signal processing</td>
<td>Imp. response the same for voltages and currents</td>
</tr>
<tr>
<td>Signal Sampling</td>
<td>Synchronization required</td>
</tr>
<tr>
<td></td>
<td>Optimal sampling freq. likely to exist</td>
</tr>
<tr>
<td>Major alg.</td>
<td></td>
</tr>
<tr>
<td>Data window</td>
<td>Can be: fixed, selected in optimal way, determined by the fixed number of samples and the sampling frequency, free to be selected</td>
</tr>
<tr>
<td>Number of samples</td>
<td>Either depends on the sampling frequency or is not determined by any particular requirement</td>
</tr>
</tbody>
</table>

©2014 Mladen Kezunovic. All rights reserved
Algorithm Properties

<table>
<thead>
<tr>
<th>Algorithm Characteristics</th>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elimination dV/dt term</td>
<td>Treatment of the e(t) term</td>
</tr>
<tr>
<td></td>
<td>Via samples</td>
<td>Via integration</td>
</tr>
<tr>
<td>Signal content</td>
<td>Theoretically do not influence the results</td>
<td>Some alg are not sensitive</td>
</tr>
<tr>
<td>Fundamental harmonic</td>
<td>Sensitive</td>
<td>Sensitivity may be reduced</td>
</tr>
<tr>
<td>Higher harmonic and transients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog signal processing</td>
<td>Imp. response the same for voltages and currents</td>
<td>System function the same for (\omega).</td>
</tr>
<tr>
<td>Signal measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling</td>
<td>Synchronization required</td>
<td>Synchronization is not required if the rotation is applied</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data window</td>
<td>Can be: fixed, selected in optimal way, determined by the fixed number of samples and the sampling frequency, free to be selected</td>
<td>Fixed</td>
</tr>
<tr>
<td>Number of samples</td>
<td>Either depends on the sampling frequency or is not determined by any particular requirement</td>
<td>Fixed</td>
</tr>
</tbody>
</table>
Class II characteristics

<table>
<thead>
<tr>
<th>Algorithm Characteristics</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No optimization</td>
</tr>
<tr>
<td></td>
<td>First Harmonic</td>
</tr>
<tr>
<td>Fundamental harmonic</td>
<td>Some alg. are not sensitive</td>
</tr>
<tr>
<td>Higher harmonic and transients</td>
<td>Sensitive</td>
</tr>
<tr>
<td>Noise term</td>
<td>Sensitive</td>
</tr>
<tr>
<td></td>
<td>Analog signal processing</td>
</tr>
<tr>
<td></td>
<td>Signal Sampling</td>
</tr>
<tr>
<td>Major alg.</td>
<td>Data window</td>
</tr>
<tr>
<td></td>
<td>Number of samples</td>
</tr>
</tbody>
</table>
Analysis of the Algorithm Properties

- Signal Contents
- Signal Measurements
- Major Algorithm Parameters

©2014 Mladen Kezunovic. All rights reserved
Signal Contents

- Fundamental Harmonic

- Higher Harmonics and Transients
 - Results are more accurate when these signal components Die-Off

- Noise Term
 - The accuracy depends on the treatment of the Noise Term
Fundamental Harmonic

- Two groups of algorithm sense the change differently
- Parameter L is sensitive to frequency change
- Frequency change, in general, affects algorithms of the second group
Signal Measurements

- Analog Signal Processing
 - Conditions for the use of the filtered signals
 - The role of the antialiasing filter
 - Time Delay of the analog filter

- Signal Sampling
 - Sampling Synchronization
 - Sampling Frequency

©2014 Mladen Kezunovic. All rights reserved
Major Algorithm Parameters

- Data Window
- Number of Samples
Data Window

• Fixed

• Can be selected in an optimal way

• Determined by the fixed number of samples and the sampling frequency

• Free to be selected
Number of Samples

- Fixed
- Depends on the sampling frequency
- Not determined
Summary

<table>
<thead>
<tr>
<th>Algorithm Characteristics</th>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elimination d/dt term</td>
<td>Treatment of the (e(t)) term</td>
</tr>
<tr>
<td></td>
<td>Via samples</td>
<td>Via integration</td>
</tr>
<tr>
<td>Fundamental harmonic</td>
<td>Theoretically do not influence the results</td>
<td></td>
</tr>
<tr>
<td>Higher harmonic and transients</td>
<td>Sensitive</td>
<td>Sensitivity may be reduced</td>
</tr>
<tr>
<td>Noise term</td>
<td>Analog signal processing</td>
<td>Imp. response the same for voltages and currents</td>
</tr>
<tr>
<td>Signal measurement</td>
<td>Signal Sampling</td>
<td>Synchronization required</td>
</tr>
<tr>
<td></td>
<td>Optimal sampling freq.</td>
<td>Non conclusion about optimal sampling freq.</td>
</tr>
<tr>
<td>Data window</td>
<td>Can be fixed, selected in optimal way, determined by the fixed number of samples and the sampling frequency, free to be selected</td>
<td>Fixed</td>
</tr>
<tr>
<td>Number of samples</td>
<td>Either depends on the sampling frequency or is not determined by any particular requirement</td>
<td>Fixed</td>
</tr>
</tbody>
</table>