Communication and Embedded Systems: Towards a Smart Grid

Radu Stoleru, Alex Sprintson, Narasimha Reddy, and P. R. Kumar
• Smart grid communication
 – Key enabling technology
 • Collecting data
 • Control loop

• Challenges:
 – Complex Cyber Physical System
 – Organic growth (hard to integrate new technologies)
 – Stringent security requirements
 – Proprietary protocols
 – Lack of unifying modeling/configuration tools
• Research Interests
 – Support real-time communication
 • Flow-level and per-packet guarantees
 – Correctness
 • Analyze interactions between protocols
 • Verification and validation across all protocol levels
 – Managing large amounts of data
 • Compress, transfer, extract features
 – Reliability of Cyber-Physical Infrastructure
 • Cyber part affects physical part and vice-versa
Narasimha Reddy

- Research Interests: Smartgrid Communications
 - Managing critical infrastructure
 - Need to be simple and cheap for home use
 - Need to be robust, vulnerability proof to prevent mischief
 - Phasor data requires tight QoS
 - Data volumes low, but difficult to support the QOS without a dedicated network
 - Managing the devices will be difficult
 - Once deployed, difficult to replace
Narasimha Reddy

• Ongoing research examples
 • High-Performance Storage and Delivery
 • Hybrid Storage Systems
 • Network Protocols
 • Network Security
 • IP based smart storage
 • Protocols for extreme network environments
 • Routing protocols for improving service availability
 • Statistical techniques for traffic analysis
 • Secure devices on network processors
 • Multimedia Storage
 • Network QoS
• Research Interests
 – Deeply embedded wireless sensor networks; Adhoc and Delay Tolerant Networks
 • Energy efficiency, fault tolerance, security, QoS in large scale networks, with complex network topologies
 – Distributed Systems
 • Big Data, large scale distributed processing systems: infrastructure for MapReduce, Hadoop
 • Mobile Cloud computing
 – Cyber-Physical Systems (CPS)
 • Flow-based CPS: water distribution systems, power grid distribution systems, nanorobot networks for human circulatory system
Radu Stoleru

• Ongoing research examples:
 • Energy Efficient Protocol Design for Sensor Networks with Complex Topology
 • Multi-Channel and Multi-Radio Media Access Control for Coexisting Wireless Networks
 • Resource Allocation for k-out-of-N Computing in MANET
 • Event Detection and Localization in Flow-based Cyber-Physical Systems (Flow-based CPS)
 • Cooperative Intrusion Detection for Resource Constrained Wireless Networks (AMINET)
 • Secure Neighbor Discovery in Mobile Ad Hoc Networks (MSND)
 • A Wireless Sensor, AdHoc, and Delay Tolerant Infrastructure for Emergency and Tactical Networks (DistressNet)
• Research Interests
 • Integration of renewables
 • Demand response
 • Electric vehicles
 • PMU data analysis

• More broadly
 • Wireless networks
 • Cyber-Physical systems
 • Control
 • Information theory
 • Transportation
• Ongoing research examples
 • Demand Security of inertial loads
 • Dimensionality reduction of PMU data and early event detection
 • Utilization of wind energy for data centers
• More broadly
 • A clean slate approach to security of wireless networks
 • Real-time wireless networks
 • Safety of automated traffic
 • ...
U.S. Energy Consumption by Energy Source, 2009

Total = 94.578 Quadrillion Btu

Petroleum 37%
Natural Gas 25%
Coal 21%
Nuclear Electric Power 9%
Renewable Energy 8%
Geothermal 5%
Biomass waste 6%
Wind 9%
Biofuels 20%
Wood 24%
Hydropower 35%

Total = 7.744 Quadrillion Btu

Solar 1%

Note: Sum of components may not equal 100% due to independent rounding.
The context

Supply Sources

- Petroleum: 37%
- Natural Gas: 25%
- Coal: 21%
- Renewables: 8%
- Nuclear: 9%

Demand Sectors

- Transportation: 28%
- Industrial: 20%
- Residential & Commercial: 11%
- Electric Power: 41%

Total: 94.6 quadrillion Btu

Source: Energy Information Administration, Annual Energy Review 2009

(Total: 7.15 billion metric tons of CO2 equivalent)

- Electric Power Industry: 34.2%
- Transportation: 27.9%
- Industry: 19.4%
- Residential: 13.0%
- Commercial: 8.7%
- Agriculture: 7.0%
- U.S. Territories: 0.8%

• How to increase usage of non-greenhouse gas emitting renewables in
 – Buildings, e.g., space heating?
 – Transportation?
Current situation

- Demand drives supply

- Little explicit information is needed for adjusting to demand
- Generators “feel” the increase in demand
Operating reserve

- Supply is adjusted to meet demand
 - Needs an Operating Reserve

Diagram:
- Operating Reserve
 - Non-event
 - Regulating Reserve: Automatic, Within optimal dispatch
 - Following Reserve: Manual, Part of optimal dispatch
 - Event
 - Contingency Reserve: Instantaneous
 - Primary
 - Secondary
 - Tertiary
 - Ramping Reserve: Non-Instantaneous
 - Primary
 - Secondary
 - Tertiary
 - Replace secondary

NREL/TP-5500-51978 August 2011
The need for a new strategy

• Why not use same strategy for renewables?

• Renewable energy cannot be ramped up
• In fact it is “stochastic”
• Regulating reserve requirements will need to be large
• Negate the benefit of wind power
• Also stability of power system needs to be maintained
• So not feasible to use older strategy of “supply follows demand”
Can we make “Demand follow supply”

• Can we adjust demand in response to supply?
Challenges for Demand Response

• Thermal Inertial Loads
 – Traditionally under thermostatic control
Alternative architectures

- An Aggregator Architecture

 - Sense “home state” (Temperature, pool condition)
 - Transmit information from Building to Aggregator
 - Convey Actuation Commands from Aggregator to Buildings
Research challenges

• Challenges
 – Contract between Aggregator and ISO
 – Contract between Aggregator and Customers
 – Prediction of renewable power at different time scales
 – Optimal control of inertial loads
 – De-synchronization of loads
 – Privacy and Security of load information
 – Communication modalities
 – Development of algorithms
A Fully Distributed Architecture

Challenges

- Closing technological loops with economic mechanisms
- Stability of system
- Design of customer contracts
- Security of system to spoofing and other attacks
Synchrophasors: The Big Data Challenge

• Challenges
 – Point pattern analysis of synchrophasor measurements
 – Dimensionality reduction
 – Event detection using online synchrophasor data
 – Optimal placement of PMUs
Electric Vehicle Charging Infrastructure

- Challenges posed for development of EV charging networks
 - Charging station optimization as a function of
 - Car state, maximum charging rate, deadline, variability of energy price, customer willingness to pay

- Optimal choice of charging stations
 - Bid price, availability, congestion, deadline

Power, price

Optimal utilization of power

Storage
Thank you

- Coal: 45%
- Natural Gas: 23%
- Nuclear: 20%
- Hydroelectric: 7%
- Other Renewables: 4%
- Petroleum: 1%
- Other Gases: 0.3%
- Other: 0.3%