Tarla Rai Peterson
April 17, 2013

Contributors
Bruce A. McCarl
Steve Puller
Arnold Vedlitz
Bruce A. McCarl

University Distinguished Professor and Regents Professor, Agricultural Economics, Distinguished Fellow Agricultural and Applied Economics Association

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/biomass.html

Cost benefit modeling of biofuels, greenhouse gas mitigation, climate change along with agricultural, forest, and natural resource policies for over three decades

Lead author on IPCC, Working Grp II, Economics of Adaptation Chapter & Working Group III, Agricultural Mitigation Chapter.
GHG, Cost, Renewables, Design

- **GHG Implications and cost**
 - generation and distribution costs
 - implementation costs/benefits
 - GHG emissions reductions (LCA)
 - Broader implications

- **Renewable role**
 - Agriculture & forest feedstocks
 - Biomass power logistics
 - Food vs biomass

- **System design**
 - Scope & configuration
 - Evolution
 - Alternative epower sources
best practices — public participation in environmental and energy policy

Intersections between communication, democratic practice, and public policy

Climate change communication and energy systems
Definitions and Visions

• Definitions
 – Transmission
 – Storage
 – distribution

• Visions
 – transformative (dystopian/utopian) vs incremental (gradual, minimal)
 – Potential connections

• Social control preferences
 – authoritarian, egalitarian, hierarchic

• Social function systems
 – aesthetics, economics, law, politics, science

• Public discourse via media directed to diverse audiences

• Policy stakeholders via interviews with primary energy sector actors & policy documents
Associate Professor, Economics
Research Associate, National Bureau of Economic Research

Research Interests

- Studying the performance of energy markets and the role of policy to create an efficient energy sector
- Typically use large, real-world datasets to conduct empirical analysis
- Electricity sector:
 - Retail and wholesale market design
- Transportation sector:
 - Modeling vehicle purchase and utilization decisions
• (Examples)
 – Quantifying the role of dynamic pricing of electricity to commercial and industrial customers & measuring demand response
 – Comparing the efficiency of regulated and deregulated retail electricity markets
 – Modeling the diffusion of PEVs using vehicle registration data from Texas
Arnold Vedlitz

• **Bob Bullock Chair in Government and Public Policy**
• **Director, Institute for Science, Technology and Public Policy**
• **Division Head, Science, Technology and Public Policy Division, TEES**

• **Areas of expertise**
 • science and technology policy
 • decision making
 • public opinion & public participation
 • survey and interview research
Ongoing Research

• Stakeholder risk/reward perceptions
 – Identify, manage, integrate multiple orientations to SG issues

• Government regulatory issues and demands
 – Oversight, laws, rules at multiple levels

• Public support for resource allocations
 – Widespread approval required for development and survival