A MULTI-MICROPROCESSOR BASED DISTANCE RELAY: DESIGN REQUIREMENTS AND IMPLEMENTATION CHARACTERISTICS

M. Kezunovic, S. Kreso and O. Petrovic

Energoexport Company, Institute for Control and Computer Sciences, Sarajevo, Yugoslavia

Abstract. This paper describes a Multi-microprocessor Based Distance Relay Implementation. Design requirements are outlined first. Detailed discussion of system, maintenance and testing, interface, and cost/performance requirements is given. Second part of the paper provides an overview of the implementation characteristics. System architecture, hardware, software and algorithm issues are presented. Finally, a conclusion is drawn related to the major advantages of the design as well as to the future testing and evaluation procedures.

Keywords. Digital computer applications; microprocessors; power system control; protective relaying; digital distance relay.

INTRODUCTION

Application of microprocessors to the area of Electric Power System Control, Protection and Analysis was developing as a research activity during the past ten years (Nguyen, Kezunovic, Oy-Liacco, 1984). During this time period number of microprocessor-based devices and systems were developed and tested in both laboratory and substations environments. Some of these devices and systems did appear on the world market in the past couple of years, but a full expansion of this market is expected in the near future.

This paper is concerned with implementation of a distance relay function using LSI technology. A number of attempts were made around the world to develop microprocessor-based distance relays and a great variety of the solutions were reported so far (Kezunovic, Kreso, 1984). However, a closer look at the characteristics of those solutions shows that there are many different implementation approaches as there are different solutions. It should be also noted that there are very few commercially available distance relays on the world market and it is expected that final evaluation of the numerous solutions mentioned will actually be driven by the future market expansion.

Major aim of this paper is to discuss basic characteristics of a Multi-microprocessor Based Distance Relay developed for high voltage, medium length transmission line protection. Some specific design requirements are discussed first. Characteristics of the solution are presented next. Conclusions are related to the major advantages of the design as well as to the future testing and evaluation procedures. List of references is given at the end.

It should be noted that the Distance Relay presented in this paper is a part of an Integrated Control and Protection System development and some discussions in the paper are related to this problem as well.

DESIGN REQUIREMENTS

Discussion of the design requirements is related to the specific requirements which are generated by the capabilities of the microprocessor technology. Some standard protective relaying system requirements which are independent from the technology used are not discussed but just briefly mentioned.

Protective Relaying System Requirements

The basic requirements are that relay is to protect medium length (order of 100 km), high voltage (up to 400 KV) transmission lines with single and parallel configurations. The relay should be capable to interface to Automatic Reclosing, Out-of-step and Pilot Relaying modules which are external to the relay. Relay characteristic should be quadrilateral as given in Fig. 1.

Regarding relay operating performance, it should react in zone 1 with speed in the range of 0.1 to 0.3 depending on the type and location of the fault. Relay accuracy should be optimized considering the three major signal processing steps: signal sampling and A/D conversion, line parameter calculation (selection of algorithms), transmission line model presentation (Kezunovic, Perunicic, 1984). Relay should also be selective for specific situations such as close-in faults, voltage collapse, propagating faults.

Maintenance and Testing Requirements

Use of the microprocessor technology brings some specific requirements regarding maintenance and testing. An example is a self-testing requirement which should enable operator to identify faults in the relay hardware. Further more, the relay should be designed to enable exchange-of-modules repair strategy which should decrease MTR (Mean Time To Repair) system time and hence improve availability performance. Another specific requirement is that relay is
integrated system interface. This relay should be designed as a subsystem of an integrated Control and Protection System (Kuznovic, 1985). This requirement asks for implementation of an interface to the higher levels of the Integrated System, where overall Operator System Interface is provided. A requirement is also that raw samples, intermediate calculated values and parameters should be transferred through the higher level interface from the relay, and relay settings and operator requests to the relay through the same interface. This interface should also enable exchange of the enabling and blocking signals among all of the subsystems within the integrated system.

Cost/ performance Requirements
The main requirement in this respect is that the microprocessor-based relay design be better or comparable to the solid-state relay design. However, it is evident that the use of microprocessors brings some performance improvements compared to the solutions based on the previous technologies. A question arises then related to the acceptable cost increase associated with the mentioned performance improvements. It is believed that only the market needs will provide final specification of the cost/performance requirements and therefore close evaluation of the market needs is necessary before such a design is defined and finally offered.

CHARACTERISTICS OF THE SOLUTION
Further discussion is related to the description of the major characteristics of the solution such as: system architecture, hardware, software and algorithms.

Relay Architecture
Analog Input Board (AIB). An outline of the AIB architecture is given in Fig. 2. It can be noted that this is a special purpose microcomputer board designed around an 8-bit microprocessor and associated digital and analog circuitry (Kuznovic, Kreso, Sarajle, 1984). It consists of an A/D converter with eight multiplexed inputs. These inputs correspond to four current and four voltage signals coming from the instrument transformers placed in the switchyard. Mentioned signals are converted by the A/D circuitry and stored in the dual ported memory. Further communications with the main processing board are performed via the MULTIUOS.

Microprocessor Distance Relay (MICRODUR). Architecture of the MICRODUR is given in Fig. 3. It should be noted that this is a multiprocessor architecture consisting of three microcomputer boards. The first board is the AIB, other board is the main processing board which accommodates an 8086 16-bit processor and an 8087 numeric processor, and the third board is the ETHERNET Controller. MICRODUR is interfaced to the switchyard through the AIB, to the integrated system via an ETHERNET Controller, to the external equipment (UGS, PILOT, ARC) via an I/O adapter, and to the operator via serial and parallel ports. Major interprocessor communication is done either over a private processor bus or over the MULTIUOS.
A Multi-Microprocessor Based Distance Relay

Fig. 2. Analog Input Board Architecture

ARC - Automatic Reclosing
OPIB - Operator Panel Interface Board
AIB - Analog Input Board
I.T. - Isolating Transformers
005 - Out of Step
O.P. - Operator Panel
P.I. - Parallel Interface
N.P. - Numeric Processor
D.P.C. - Dual Port Controller

Fig. 3. Microprocessor Distance Relay (MICRODIS) Architecture
Integrated System (IS). As it was mentioned in the requirements section of this paper, MICHODIN is a subsystem of the system solution which integrates several devices in an Integrated Control and Protection System. An outline of the IS architecture is given in Fig. 4. As it can be seen, the IS consists of the three devices namely MICHODIN, MICROSTOR and MICHOLAMTS (Kuzunovic, 1995). MICROSTOR is a microprocessor based Transient Recorder and MICHOLAMTS is a microprocessor based Local Automation device. All of the three subsystems are interconnected over a multidrop serial link. Also, a system operator interface device is included which provides local and remote operator interface. This device is also connected to the multidrop serial link and hence represents a system interface for the MICHODIN as well. Multidrop serial interface (MSI) is implemented using an ETHERNET Controller.

Relay Hardware

Analog Input Board. This is a MULTIBUS compatible custom designed board. This is quite a complex hardware solution which contains capabilities to perform self-checking, auto calibration, and gain and offset correction. It also contains an 8-bit microprocessor to control an A/D converter circuitry as well as to perform mentioned testing functions. It should be noted that this complex solution was needed because the analog input circuitry is quite sensitive to the temperature changes and yet it can be shown that accuracy of the overall algorithm is quite dependent on the accuracy of the A/D signal processing circuitry. Further more, in order to optimize overall relay processing hardware design, it was conceived that some of the data processing for relaying purposes can be done using this board. Finally, the design is quite flexible and programmable since it was produced under wider integrated system requirements so that it can be used for some other subsystems within the Integrated System. Detailed discussion of the AIB hardware can be found in Kuzunovic, Kreso, Sarajlic, 1984.

MICHODIN. The relay is designed around INTEL family of microprocessor chips and boards. The main processing board is an OEM INTEL 86/16 board with an ISBC 337 multiboard used. ETHERNET Controller is also an OEM product. An ETHERNET board which needs a separate CPU board as a controller is used at present, but future design should use an intelligent single board ETHERNET controller.

Other MICHODIN boards are custom designed. Those include the AIB, the operator panel interface board, the I/O adapter board and the isolating transformer board. Custom designed are the power supply boards as well.

Relay Software

AIB software, flow diagram for the AIB software is given in Fig. 5. This software consists of two subroutines. One is the Initial correction subroutine which calculates initial correction factors for zero input and offset values. Another subroutine is used for actual A/D conversion pro-

![Fig. 4. Integrated system architecture](image-url)
A Multi-Microprocessor Based Distance Relay 463

Start-up and testing part are used to initialize relay hardware as well as to perform detailed testing of the overall relay hardware. This software is also executed whenever a reset of the relay is initiated.

Fault processing part consists of fault detection, fault classification, and fault verification procedures. Fault detection is executed each time the new samples are taken and serves as a starting procedure for rest of the algorithm. When a detection flag is set then the fault classification procedure is initiated. This procedure determines the type of the fault and accordingly selects a pair for further processing. The further processing is related to calculation of H and X values which are then compared against a relay characteristic of a quadrilateral form. If the calculated values are inside the zones, a tripping action is initiated.

Special routines, not shown on the diagram, are used to reconstruct the voltage samples in the case of a voltage collapse. Also, a routine is available to perform resistance correction in the case of ground faults.

Due to the stringent speed-of-execution requirements, application software is implemented using assembler programming language. Further, special care is taken in choosing assembler code design regarding full use of parallel processing on processors 8086 and 8087. Finally, structured code and modular code design is developed to support software testing and maintenance.

Software for system services. This software consists of maintenance and testing part which supports operation of the MICRODIR and related ETHERNET controller.

Maintenance and testing software includes several routines. One routine is related to the self-checking tests which are executed during the relay operation. Yet another routine is executed during extensive factory or field testing related to relay commissioning or maintenance. There are two options for this routine.

First option of the extensive testing routine is developed for a semi- graphic terminal. A flow diagram of the program DISPL is given in Fig. 7. It consists of the static display part which gives a format of the dynamic display. Dynamic display part generates points of the impedance locus as well as other intermediate values and parameters. Points of the impedance locus are drawn on the impedance diagram and rest of the values are put in the related tables.

Another option is developed for an alphanumeric CRT. Flow diagram of the program DISP is given in Fig. 8. This program is oriented toward presenting intermediate values and parameters generated and/or set in the modules of the application software. It should be noted that special software is developed to collect real-time data to be displayed by this program. Displays are organized in two pages and there is a hierarchical procedure for initiation of the displays. Logic is established which enables presentation of only those displays which correspond to the modules executing during the last iteration of the application software. It is also possible to scroll through the displays and pages in either direction.
Fig. 6. MICROMIR application software

Fig. 7. Display on a semi-graphic terminal

Fig. 8. Display on a CRT terminal
Relay Algorithms

Algorithms selected in the MICRODIR design are some modification of the already known algorithms. However, two algorithms studies are undertaken to investigate problem of algorithms in more details. Those studies are in the final stage of completion and the final MICRODIR algorithms decision might be affected by the outcome of those two studies.

Algorithms implemented. As it was mentioned in the software section, overall algorithm consists of the fault detection, fault classification and fault verification procedures. Both fault detection and fault classification procedures are using samples and amplitude values to make a decision (Gilchrist, C.B., Udren, 1972; Rocke-efeller, Udren, 1972). Detection is performed by comparing samples of a waveform at the moment of a fault with the samples of the same waveform and at a certain threshold. Amplitude values are calculated using the fast 3-sample algorithm (Gilchrist, Shovlin, 1975).

Fault classification is also performed based on both samples and amplitudes. An outcome of this procedure is a VI pair used for the fault verification procedure. It should be noted that there are two classification procedures, one based on voltage and one based on current signals.

Fault verification algorithm is based on solution of a differential equation which provides algorithms to calculate parameters M and K (McInnes, Morrison, 1971). Those values are further used for fault verification and tripping decision.

Algorithms studies. The two algorithms studies are performed in parallel to the implementation activity and major goal is to perform evaluation of the existing algorithms as well as to derive a Generalized Algorithm Form.

Evaluation study should provide a classification scheme for the algorithms (Kezunovic, Perunicic, Kreso, 1985) should define a common form to represent all of the algorithms. Certain parameters of the form would be adjustable to take into account specific requirements of the unique properties of some of the algorithms. This study would enable comparison of the various algorithm forms proposed so far in order to define a unique form for number of the similar algorithms.

Results of the two studies should provide required background to fully verify performance of the MICRODIR. Those result would also be used for a new study related to development of an Expert System for engineering design of a new generation of protective relays based on microprocessors. Basic goal would be to develop an Expert System which should provide an optimal relay design given the application conditions of a specific Electric Power System.

Conclusions

Design of the MICRODIR provides optimal solution to the stringent speed-of-execution requirements using standard hardware and software techniques which result in an acceptable cost/performance characteristic of the product. Preliminary laboratory test results are encouraging and further tests in a High Power Laboratory and a substation will be carried out in the near future. Overall integrated system testing will also be performed soon.

References


Kezunovic, M. (1985). An Integrated Microprocessor-Based Data Acquisition, Control and Protection System - Design Requirements and Implementation Characteristics. 7th Scientific Conf. for Power Industry, April, DIM.


