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Abstract

This paper introduces a new neural net (NN) approach for automated fault disturbance detection and classification. The NN
design and implementation are aimed at high-speed processing which can provide selective real-time detection and classification
of faults. The approach is extensively tested using the Electromagnetic Transients Program (EMTP) simulations of two quite
complex transmission system configurations. The results indicate that the speed and selectivity of the approach are quite adequate
for a number of different transmission and distribution monitoring, control, and protection applications.
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1. Introduction

Automated analysis of power system faults has re-
cently become an application of wide interest in both
transmission and distribution areas. This interest has
been generated since the automated analysis can be
utilized in a number of functions such as alarm process-
ing, fault diagnosis, and restorative switching. Several
systems supporting this application have been imple-
mented in the past using information obtained from
circuit breaker and relay contacts. The information was
acquired by either the sequence of events recorders
(SOEs) or the remote terminal units (RTUs) of the
supervisory control and data acquisition (SCADA) sys-
tems. A number of such developments have been re-
ported worldwide [1].

Most recently, it has been recognized that the fault
analysis can be enhanced significantly by considering
samples of the analog quantities (voltages and currents)
in addition to the contacts. The authors of this paper
have developed a new concept for automated fault
analysis based on samples of both analog and contact
information acquired by the digital fault recorders
(DFRs) [2]. Based on this concept, a system was de-
signed and implemented for Houston Lighting and
Power (HL&P) Company [3].

The HL&P system was aimed at automating fault
disturbance analysis which would help the operators
significantly by relieving them from the tedious, and
quite often time consuming, task of manually searching
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and analyzing a large number of DFR recoids. After an
extensive series of tests using actual data from the field,
it has been confirmed that the system provides ex-
tremely fast and completely automated operation. As a
result, the system has recently been installed at the
South Texas Project (STP) switchyard for further use
by HL&P Engineering Design, Operations and Mainte-
nance Departments [4].

This paper reports on further enhancements of the
automated fault analysis that are achieved using neu-
ral net (NN) processing. Based on the experiences from
the HL&P system development, it has been recog-
nized that the computation of signal parameters and
the logic processing used to compare signal para-
meters with predefined settings can be substituted by
a neural network. Similar approaches were reported
by some other authors studying problems of wave-
form estimation [5] and classification [6], as well as
fault direction discrimination [7] and fault classification
(8].

The goal of the study reported in this paper was the
implementation of a new NN approach that would
demonstrate some improvements over the existing NN
techniques. A new processing method that incorporates
the advantages of both supervised and unsupervised
training procedures is developed. Preliminary results
were quite encouraging [9,10]. In order to fully demon-
strate the potential benefits of the new NN approach, a
high-speed fault disturbance detection and classification
scheme was designed, implemented, and tested. This
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paper gives details of this study with elaborate evalua-
tion of results obtained through computer simulations
of faults using two complex Electromagnetic Transients
Program (EMTP) models of actual power system
sections.

The first part of the paper is devoted to a discussion
of the application framework for this novel high-speed
technique. A new method of supervised clustering is
presented for the transmission line fault identification
problem. A detailed description of the NN design and
implementation is given next. A summary of the evalu-
ation setup and results obtained using EMTP simula-
tions are given at the end.

2. Application framework

For a clear understanding of the benefit achieved
with the new NN approach, it is important to empha-
size the specific properties and characteristics of both
the power system application and the neural net
implementation.

The fault analysis application considered in this pa-
per is related to fault detection and fault type classifica-
tion, and embodies several data processing properties
[11]. Data acquisition is aimed at collecting samples of
analog quantities (voltage and currents) from the secon-
daries of instrument transformers, and status informa-
tion (contacts) from circuit breakers, switches, and
relays. The samples of analog quantities need to be
processed simultaneously for all the voltages and cur-
rents on a transmission line. This facilitates timely
determination and comparison of the signal parameters
and time sequences of contact changes. The process of
comparison requires easy interfacing between the signal
and logic processing. The final outcome of the fault
analysis can be obtained with high selectivity and speed
since all the decisions made are based on instantaneous
changes of the signal parameters and the corresponding
sequence of events.

The fault analysis application, as defined in the
context of this paper, requires that fault detection and
classification are determined in the following manner.

e The processing has to be performed in time to
allow system operators to use the outcome of the
analysis in online applications.

e The outcome of the processing has to be presented
in a symbolic form (class names) since the detection
and classification results of the neural net computation
may be further utilized in a rule based expert system.

e The NN training has to be quite efficient and
straightforward since the fault analysis application re-
quires a fast and simple procedure to adapt to the
changing power network conditions.

Fault detection and classification is defined as a
multiclass problem. The eleven types of faults (a—g,

b-g, c-g, a-b, b-c, c—a, ab-g, bc-g, ca-g, abc,
abc—g) and the no-fault situation produce a 12-class
classification problem.

A literature search indicates that most of the NN
implementations for fault detection and classification
are based on multilayer feedforward nets. In this case
the application is considered to be a mapping problem.
Supervised learning can be used where sets of associ-
ated input—output pairs are presented to a net which
then ‘learns’ a model of that process. However, the
training of multilayer networks is computationally de-
manding and in some instances tens of thousands of
iterations are needed to achieve convergence. Such a
performance may not be suitable for fast detection and
classification. Since our problem is a classification prob-
lem, where only discrete labeling of classes is needed,
the use of feedforward networks may not be fully
justified under stringent processing time requirements.

Another possible approach of the NN application to
our problem is to exploit data self-organization ob-
tained through the use of unsupervised learning. After
the learning (cognition phase), the user defines or labels
clusters according to some criterion. The net is then
ready for the classification task (recognition phase).
Therefore, the concept of data self-organization
through the use of unsupervised learning is valuable for
discovering how an ensemble of patterns is distributed
in the pattern space.

To overcome the above-mentioned limitations of
multilayer feedforward networks, and to take advan-
tage of the suitability of self-organizing networks to
perform a classification through the clustering process,
a new NN approach has been developed and applied in
our study. It incorporates the advantages of both super-
vised and unsupervised training procedures and yet
meets the requirements presented earlier. The proposed
method utilizes the concept of supervised clustering
which demonstrates the following important properties.

e The number of iterations in the learning process is
greatly reduced using unsupervised learning with a su-
pervised class membership inheritance process.

e The training is far less complex than in standard
supervised learning.

e Combination of symbolic and numeric data is
readily available.

3. NN description

The NN algorithm used for this study embodies the
ISODATA clustering algorithm which is well known in
classical pattern recognition [12]. This type of neural
net assumes no teaching and performs unsupervised
learning. The process performs a comparison of a given
input with previously encountered patterns. If the input
is similar to any of the patterns, it will be placed in the
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same category. If the input is not similar to any of the
previously presented patterns, a new category will be
assigned. Category proliferation is controlled by the
threshold parameter. A NN system with a low
threshold will permit grouping of patterns with high
similarity and vice versa.

Fig. 1 shows the block diagram of the algorithm that
combines both unsupervised learning (USL) and super-
vised learning (SL), used in this study. The initial data
set, containing all the patterns, is processed using an
unsupervised clustering algorithm.

Initially, the threshold parameter p is large and cho-
sen in such a way that the clustering algorithm gener-
ates a small number of clusters. As the training process
continues, the value of p is reduced (e.g. after every
interation p,.., =0.95p,4).

The output is a stable family of clusters, defined as
hyperspheres in N-dimensional space, where N denotes

I Clustering of patterns using '
v modified ISODATA algorithm . I

Label homogeneous
cluster extraction

N

Input pattern set Class membership
reduction assignment
Mecdification of
threshold parameter
P unclassified patterns

o
p<e

Fig. 2. Schematic illustration of the outcome of the training process.

the number of features in each pattern. The task of
supervised learning is to separate nonhomogeneous
clusters from the homogeneous ones.

Next, class membership is assigned to homogeneous
clusters. The training data set is then reduced to con-
tain only patterns from nonhomogeneous clusters. The
threshold parameter p is decreased, and the whole
procedure is reiterated.

After completion of the training procedure, all gen-
erated clusters contain uniform data patterns, and are
characterized by their centroids, corresponding radii
(i.e. threshold parameter p), and inherited class mem-
bership. Fig. 2 shows a schematic illustration of the
outcome of the training process in the feature space.

It can be observed that the cluster topology is not
uniform, and that two or more clusters may have the
same class membership.

4, Implementation details

The mathematical foundation of the NN used is
described as follows.

Given is a set of P (p=1,2,..., P) patterns, x*,
where

x(ﬂi = [xl(l))a x2(p)1 LR ] XN(IJ)]T (l)
4.1. Initialization run

Step 1. We form cluster number 1, b,(1)=x"
(meaning cluster C, with centroid b, contains one
pattern).

Step 2. If (x@ —b,)"(x® — b,) < p?, then we adapt
b, as

b, (2)=b,(1) +3[x? ~ b (1)] (2)
If (x®—5,)" (x®—b,) > p? then we form cluster 2 as
by(1)=x?

In doing so, after presenting ¢ < P patterns the situa-
tion is as follows: m clusters exist, their centroids b,, are
known and we know how many patterns, #,,, belong to
each cluster.

When we present the next pattern, ¢+ 1, we first
allocate the closest cluster ¢ by

m,-in [(x(z/+I)___bj)T(x(qul)_bj)]:rrz 3)

and then compare r,? and p>.
If r.2 < p? then we adapt the cluster as

b.(n.+1)=b.(n)+

[T < b (n,)] @

n,.+
If r.2> p? then we form a new cluster as

Byir(1)=x Y
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This procedure is repeated until the entire set of
patterns is processed once.

4.2. Stabilization run

Step 3. We present every pattern, x¥, again. Let,
say, the present pattern p belong to cluster C,. The
shortest distance between x® and all existing centroids
b; is found using Eq. (3).

If t=k and r,>< p? then no learning occurs; we
check the next pattern, p + 1.

If t#k and r,> < p? then we adapt b, using Eq. (4)
and b, as

b (m,—1)=b,(n,)— ] [x® — b, (n,)] (5)
. —
for n, > 1.
If r.2> p? we form the new cluster C,,,
b, (1)=x®

and adapt the ‘previous’ centroid b, using Eq. (5).
Stabilization is repeated until no patterns change
their cluster membership.

5. Test system configurations

The Electromagnetic Transients Program (EMTP)
was chosen as a simulation tool for providing training
data [13]. EMTP was chosen because it is widely used
software for accurate and detailed simulation of elec-
tromagnetic, electromechanical, and control system
transients on multiphase electric power systems.

Two different power systems were modeled using
EMTP. Simulations, including all types of transmission
line faults, as well as different fault locations and fault
resistances were conducted. More than 3000 different
fault patterns were generated for both models. Since
EMTP simulations are computationally intensive, an
IBM RISC 6000/340 workstation was used. Supporting
software and tools to facilitate and automate the simu-
lation process have also been developed. The EMTP
simulations took approximately 30 hours of computer
time.

System 1 represents a section of an actual 161 kV
power system with short and mutually coupled trans-
mission lines. A single-line diagram of this system is
given in Fig. 3. The transmission line along which the
fault events were simulated is fully transposed and
21.5km long (line between buses 2 and 3). Details of
the EMTP model are given in the Appendix.

System 2 is more complex. It represents a section of
an actual 345 kV power system with long and compen-
sated transmission lines. EMTP representation also
contains detailed models of capacitor coupled voltage

1 3

Fig. 3. Single-line diagram of the 161kV power system.
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Fig. 4. Single-line diagram of the 345 kV power system.

transformers (CCVTs), current transformers (CTs),
metal oxide varistors (MOVs), and surge arresters. For
clarity, these elements are not all shown in the single-
line diagram in Fig. 4. Part of lines 1 and 3 and lines 2
and 4 is mutually coupled. Faults were simulated on
lines 1 and 2. Protection zones indicated in Fig. 4 are
selected based on the ideal relay operating characteris-
tic. Relay 1 should operate instantaneously for the
faults in zone 1. In the case of faults in zones 2 and 3,
relay 1 should operate after 7, and 75 seconds
(T, < T;), thus allowing relay 3 to operate first and
clear the fault. This relay operating logic is emulated in
the NN algorithm described in this paper. The model
details are presented in the Appendix.

6. Test results

In order to evaluate the performance of our NN
approach, several different test strategies were tried.

First, the NN was subjected to different types of
input signals. Table 1 shows six input data sets that
were used for NN training and testing. The concept of

Table 1
Neural network input data sets

Input Pattern length
format

Sample types

Cycles No. of samples

I 3 594 voltages and currents
2 3 594 only currents
3 3 297 only voltages
4 1 198 voltages and currents
5 1 99 only currents
6 1 99 only voltages
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Fig. 5. Sliding window NN input for input set 2,

a sliding window input into the NN for one of the input
types is shown in Fig. S. Sliding motion is obtained by
putting every new sample at the front of the window
and removing the first sample from the end of the
window. This arrangement was used for evaluation of
real-time applications.

Second, two different NN training procedures were
tried, one with a reduced number of training samples
(case 1), and the other using a large number of train-
ing samples (case 2). Table 2 shows a summary of
these two cases used for evaluation of non-real-time
applications.

For real-time applications, the NN classifier has to
perform fault detection and fault type classification,
typically in one 60 Hz cycle (16.67 ms). The NN
classifier was trained using 200 fault patterns. For this
application, fault cases were generated using the 161 kV
model. The input feature vector to the NN contained
samples of phase currents (all three phases). It was
organized in the form of a sliding data window with a
fixed window length of one cycle (33 samples at 2 kHz).
The NN was implemented and tested on an IBM
compatible PC with an Intel 486 DX-2 microprocessor.
The computation time for the fault detection logic was
0.2ms, and for the fault classification logic it was
15ms. Taking into consideration that the data sam-
pling frequency was 2 kHz, it can be concluded that the
fault detection was operating in real time, while fault
classification required slightly longer. Further work is
being done to evaluate possible enhancements of the
NN computational performance by using special digital
signal processors (DSPs) for real-time embedded
applications.

After training, the NN was tested using 80 new fault
cases that were generated using the 161 kV EMTP
model. Test patterns included all types of transmission
line faults, different fault resistances, and various fault
incidence angles. It has been observed that the fault
incidence angle is the parameter that has the most
important influence on the overall NN performance.
The classification rate that the NN reached for this
application ranged from 52% for faults that had inci-
dence angles different from those used for initial train-
ing to 92% for new faults that had incidence angles
similar to those used for training.

Table 2
Neural network training cases

Case Phase No. of Type of patterns
Patterns
1 Training 397 patterns covering only

boundaries of zones 1,

2, and 3 all fault
resistances low

patterns covering all three
zones, every 10% of lines,
fault resistances low and
high

Testing 1980

2 Training 1189 patterns covering all three
zones, every 13% of lines,
fault resistances both
low and high

Testing 1188 patterns covering all

three zones, every
10% of lines, fault resistances
low and high
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The offline applications were tested using more than
2000 different fault cases obtained from the 345kV
EMTP model. Two training cases were evaluated (see
Table 2). First, training of the NN was conducted using
397 patterns. These fault patterns included all types of
line faults, different fault resistances, and different fault
incidence angles, covering only the boundaries of zones
1, 2, and 3. Lines | and 2 (see Fig. 4) were segmented
and faults were simulated every 10% of the length of
both lines. Faults generated on line 2 were regarded as
remote faults with respect to line 1. The training proce-
dure for this NN is very fast. Less than 10 minutes of
the IBM RISC 6000/340 computer time were needed to
complete the training.

The testing of the NN was performed using 1980 new
fault cases. The classification rates are shown in Fig. 6.

It can be seen that the NN exhibits good generaliza-
tion capabilities even when subjected to restricted train-
ing (case 1). Classification rates for fault type and fault
location are similar.

After a close inspection of misclassified fault pat-
terns, it was noticed that the largest number of mis-
classified patterns belong to the faults with high
resistance. Fig. 7 shows the classification results when
these patterns were removed from the test set. The worst
classification results were obtained when only voltage

[ WFauleType ClassificationRate  EIFault Location Classification Rate]

100 v
90 153
80 +
70 +|
60 1
% 50 1
40 ¢+
30 1
20 1
10 ¢

9136 9056

8752 868 87.6

78.64
67636793

Sst1 Set 2 Set3 Set4 Set$S Set 6

Fig. 6. NN classification results for case |.
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Fig. 7. NN classification results for case 1 without high-resistance
faults.

[ H Fault Type Classification Rate [}Fault Location Classification Ralc]
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Fig. 8. NN classification results for case 2.
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Fig. 9. NN fault type misclassification results for input data set 2.
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Fig. 10. NN fault location misclassification results for input data
set 2.

signals were used as NN inputs.

Training case 2 contains 1189 fault patterns. These
patterns included all types of line faults, different fault
resistances, and different fault incidence angles, covering
all three zones. Faults were simulated as before, every
10% of the length of lines 1 and 2. Faults generated on
line 2 were regarded as remote faults with respect to line
1. The training procedure in this case took less than an
hour on the IBM RISC 6000/340 workstation.
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Fig. 11. NN fault type misclassification results for input data set 6.
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Fig. 12. NN fault location misclassification results for input data
set 6.

The testing was then performed using 1188 new fault
cases. The NN classification rates are shown in Fig. 8.
It can be seen that the classification rate is greater than
in case 1. This was expected because of the more
appropriate NN training.

Figs. 9-12 present the distribution of the mis-
classified patterns by fault type (Figs. 9 and 11) and
fault location (Figs. 10 and 12). The best results were
obtained for input data set 2 (Figs. 9 and 10) where
inputs were only phase current waveforms with a data
window length of three cycles. On the other hand, the
worst performance was noticed for input data set 6
(Figs. 11 and 12) where only voltage waveforms were
presented and the data window was one cycle long.

7. Conclusions

The results of this study demonstrate that:

e the proposed NN approach is quite powerful since
it combines the advantage of supervised and unsuper-
vised learning techniques;

e stringent application requirements for high speed
and selectivity are met;

o classification consistency 1s maintained over a
wide range of testing conditions.

Appendix

Table Al
Source impedances for system 1

115

Bus Per-unit value Actual value (Q)

] Z, 0.58 +j6.32 1.503 +j16.382
z, 0.58 +j11.41 1.503 +j29.576

2 Z, 0.07 +j1.07 0.181 +j2.774
Z, 0.04 +j0.73 1.104 + j1.892

3 Zy 0.75 + j4.07 1.944 + j10.550
Z, 0.31 4+ j3.04 0.804 + j7.880

Table A2

System equivalents for system 1

Line Per-unit value Actual value (Q)
13 Zy 119.69 +j188.9 310.25 + j489.72
VA 1.80 +311.44 4.67 +j29.65
2-3 Zy %X %€
Z, 12.58 +374.00 32.61 +j191.82
1-2 Z, 39.79 +3100.63 103.14 + j260.84
Z, 2.75 +j18.32 7.13 4+ j47.49
Table A3

Self-impedances of lines for system |

Bus Per-unit values Actual value (Q)
1-3 Z, 8.94 1 j28.34 23.18 +373.40
Z, 1.52 +j9.00 3.94 +j23.48
1-3 Z, 8.52 +j29.23 22.08 +375.71
Z, 1.38 +8.80 3.58 +3j76.13
1-3 Z, 8.40 +j29.37 21.77+4376.13
A 1.34 +j8.73 347 +j22.62
1-2 Z, 8.42 +j26.74 21.82 +j69.31
Z, 1.50 + j8.47 3.88 +j21.95
2-3 Z, 3.67+j12.38 9.51 +332.09
Z, 0.67 +j3.92 1.73 +310.16
Table A4

Lines 1 and 3 (with mutual coupling): system 2

Phase R’ Z, T Length
(Q/km) Q) (s) (km)

b 7.07E —-01  7.53E+02 7.10E—-04  129.55

a SJA13E—02  4.69E +02 494E — 04  129.55

c 3.13E—02 332E+02 445E—04  129.55

a 3.06E—02 3.18E+02 440E —04 129.55

b 3.03E—-02 2.78E+02 4.37E — 04 129.55

c 3.01E—-02 2.75E+02 4.37E — 04 129.55

Table AS

Lines | and 3 (no mutual coupling); system 2

Phase R’ Z, T Length
(€/km) 19)) (s) (km)
3.63E — 01 6.38E + 02 373E—04 7531
303E—02 2.78E+02 254E—04 7531

c 3.11E—-02 328E+02 258E—-04 7531
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Table A6
Lines 2 and 4 (with mutual coupling): system 2

Phase R’ Z, T Length
(Q/km) (9] (s) (km)
b 7.07E—-01 7.35E+02 10.04E - 04 183.14
c SJ13E—02 4.69E + 02 6.99E — 04 183.14
a 3.13E—-02 3.32E+02 6.29E — 04 183.14
a 3.06E—02 3.18E+ 02 6.22E - 04 183.14
b 3.03E—02 278E+402 6.18E — 04 183.14
c 301E—02 2.75E+ 02 6.17E - 04 183.14

Table A7
Source impedances for system 2

Bus Actual value ()

1 Z, 0.333 +j14.366
z 1.083 + j35.255

3 Z, 1.000 + j13.500
z, 0.730 + j14.150
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