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Abstract - This paper introduces a new approach to def-
inition of digital signal processing algorithms using bilinear
form representation. The new algorithms are used to calculate
power and line parameter values based on the current and volt-
age samples: The bilinear form approach provides a convenient
methodology for optimal design of digital signal processing al-
gorithms. This feature is utilized to design digital algorithms
for power and line parameter measurements with low sensitiv-
ity to system frequency change. Several different algorithms
are defined and their performance is investigated by testing
their sensitivity to system frequency change. Various sampling
rates and different data windows are utilized to define several
test cases.

Keywords: Power system measurements, Digital signal pro-

cessing, Power measurements, Line parameter measurements,
Bilinear form representation.

INTRODUCTION

A number of different data acquisition, control and pro-
tection applications in Electric Power Systems are based on
measurements of power and line parameters. Typical examples
of power measurements performed for various data acquisition
and ‘control applications are active power (P), reactive power
(Q), apparént power (S), and power factor (PF). An example
of the line parameter measurement associated with the pro-
tective relaying applications is the transmission line parameter
measurement at the moment of the fault.

Even though the problem of the power and line parame-
ter measurement is well known and understood there are still
some new approaches being proposed and implemented. The
most recent developments are associated with digital signal
processin% techniques implemented using microprocessor-based
devices. Several different techniques and implementation ap-
proaches were proposed for power [1, 2, 3] and line parameter
measurements [4, 5, 6]. .

The new approaches are convenient because of the flexibil-
ity and computational capability of the microprocessor-based
solutions. However, the main advantage is expected in the area
of cost/performance improvements. Examples of the low cost,
high performance revenue metering [7] and protective relaying
[8] devices can be used as an illustration.

One specific area of concern in the mentioned applications
is related to the measurement sensitivity to power system fre-
quency change. Even though the permitted system frequency
changes are very small, it is well known that some of the mea-
surements experience significant error due to the frequency
change. These errors are undesirable and an efficient method

to eliminate and/or to correct the mentioned errors is required
[9,10].
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This paper defines a new approach to power and line pa-
rameter measurements based on the bilinear form represen-
tation of voltages and currents [11]. The advantage of the
microprocessor- based technology is utilized by proposing dig-
ital signal processing technique for the mentioned measure-
ments. The main benefit of the new approach is obtained by
providing an efficient synthesis methodology to develope digi-
tal measurement algorithms with low sensitivity to the system
frequency change. .

The first part of the paper introduces the bilinear form
approach used to define digital signal processing algorithms
for the mentioned measurements. The following section gives
general properties of the bilinear form representation of voltage
and current signals. The next section deals with the analysis
and synthesis methodology used to define algorithms with .low
sensitivity to system “equency change. The last section gives
test results for some of the algorithms proposed for revenue
metering and protective relaying applications.

BILINEAR FORM APPROACH
Active and Reactive Power Calculation

The average power over an interval T is defined as:

P(t) = % liTu(t)i(t)dt 1)

where u(t) and i(t) designate the voltage and current signal
respectively. Several digital algorithms can be defined for cal-
culation of the average power given by equation (1). These
algorithms can be divided in two classes, based on the assump-
tions related to the u(t) and i(t) signals. )

The class I algorithms are based on an assumption that the
1(t) and i(t) are pure fundamental frequency sinusoids of the
following form:

u(t) = Usin(wt + 1)

i(t) = Lsin(wt + 61) (2)

One algorithm can be developed by representing the voltage
and current signals by their orthogonal components given by
the following discrete-time expressions(2]:

13 27 1N om
= — in— = — nekSin—=F
Ui(n) I k§=o Un—k i k, Iin) N 3:0 TnkSIN
~ (3)
1= 2r 1= o
= — e —k, I(n)=— In_kcOS—k
U,(n) N gzou KCOS T 2(n) v I; KCOST

where the signals are uniformly sampled at frequency w, =
Nw. The algorithm for average power calculation can be now
expressed, based on the equations (1) and (3), in the following

form:
P =2Usl; + Uqu) =

Y hntinemeos (k=) (4)
= — Un—kin-mcoS—(k —m
N2 k=0 m=0 N

Another class I algorithm can be developed by representing
the voltage and current signals, given by equation (2), using
the orthogonal set of Walsh functions [3]. The discrete form
expressions for voltage and current signals are then given as
follows:
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N-1 N-1

Su(n) = 3 unkSAL(k/N)  Si(n) = Y 4,-x SAL(k/N)
k=0 K=0

(5)

N-1 N-1
Cu(n) = 3 uakCAL(K/N)  Ci(n) = 3 in_x CAL(k/N)
k=0

K=0

where the signals are uniformly sampled at frequency w, = Nw.

The algorithm for average power calculation for this case
can be expressed as follows:

in 2 N-1N-1
_ % S Y o kinm[SAL(k/N)SAL(m/N)+

k=0 m=0

P

+CAL(k/NYCAL(m/N)] (6)

The class II algorithms are based on the assumption that
the voltage and current signals are not pure sinusoids, but
they are periodical and can be represented as the sum of their
Fourier components[1]:

M
u(t) = Y Ugsin(kwt + ¢4)
k=0

M
i(t) = Y Lisin(kwt + 6;)
k=0

©)

The voltage and current signals can be now expressed in
‘discrete-time form as follows:

M . 27
u(n) = Y Uysin(==kn + ¢)
k=0 N

M 27
i(n) = gIksin(ﬁkn + 6x) (8)

where the signals are uniformly sampled at frequency w, = Nw,
N=2 (M + 1).

The algorithms for average power can now be given, based
on equations (1) and (7), in the following form:

N-1 4
P(n)= > —in_gun_s 9)
i N
As a conclusion, it can be observed that all of the indi-
cated algorithms, given by equations (4), (6) and (9), can be
represented by the following general form:

N-1N-1
P(n) = E E RemUa-kin_m
k=0 m=0
where hin is a weight attached to the product of voltages and
currents.

The expression (10) is designated as a bilinear form of sam-
ples of voltage and current signals. A matrix representation of
this form, for the power measurement algorithms, can be de-
fined as follows:

(10)

P=UTAI Q=UTBI (11)
where A and B are the weight matrices, U and I are the column
vectors of u,and 2, respectively, and Q is reactive power.

Line Parameter Calculation

The specific situation considered now is related to the line
parameter estimation at the moment of the fault on the line.
The transimmission line model considered is the following lumped
parameter model:

di(t)
d(t)

u(t) = Ri(t) + L (12)

The line parameters R and L are estimated based on the
samples of voltage and currents The parameters are eventually
used to determine the fault impedance, which can be expressed
by the following relations:

U
7 =—
I
In this case, two classes of algorithms for the line parameter
calculation can be recognized [Sﬁ .
The class I algorithms are based on a discrete-time repre-
sentation of the equation (12):

Z =R+ jwLl, or (13)

J'ug = RI%), + LJ%, (14)
where J', J2, J3 are the operators used to convert the differ-
ential equation (12) into a difference equation. Since equation
(14) is an algebraic equation with respect to R and L, two such
equations defined for two different time instances are used to
obtain estimates of the line parameter:
JIUIchik-l —_ Jluk_l.]aik
J2 I3y — T2 T3
Jzik Jluk_l - Jzik—l Jluk
J2 3k — J2e_1 3
The class II algorithms are based on the voltage and current
signal models given by the following general form:

R=

wl = (15)

z(t) = zpcoswot + Tysinwet + Y kipi(t) (16)

zg,z1 —real and imaginary part of the fundamental
frequency phasor.

where:

k;,p; — other harmonics and transients

In order to obtain line parameters by estimating the signal
components, several algorithms are defined in this class. For
an assumption that the fundamental harmonic is the relevant
signal model, it is possible to obtain discrete-time estimates of
the voltage and current phasor components:

R = azy F; = Py (7)

where « and f are operators. As a result, the line parameters
can be determined using the estimated values of the phasor
components:

aukaik + ﬂikﬁuk

R= i+ Gy
= ﬂukaik - aukﬂik
L= i + (Biry (18)

Finally, all of the mentioned line parameter algorithms, rep-
resented by equations (15) and (18), can be represented using
the bilinear form approach:

vTcr UTDI
ITEI ITEI
where C, D, and E are the weight matrices.
As a conclusion, the bilinear form approach is general enough
to be used to represent all of the mentioned digital algorithms
for power and line parameter measurements. Furthermore, it
will be shown that this approach can be used to define a num-
ber of new algorithms. This approach also enables development
of algorithm analysis and synthesis methodology. Further dis-
cussion illustrates how this approach is used to define a specific
class of new algorithms for power and line parameter measure-
ments with low sensitivity to system frequency change.

(19)

BILINEAR FORM REPRESENTATION PROPERTIES

General Bilinear Form Definition

The general bilinear form of two sequences of samples z, and
yu 1s defined by the following expression:



N-1N-1

BFn = z Z hkmzn—kyn-m (20)

k=0 m=0

where n is the discrete time when the Bilinear Form value is
determined. The term hAyn is a weight attached to the prod-
uct of two samples z,_¢ and y,_,. The bilinear form given

by equation (20) is therefore defined by the following weight
matrix:
H= {him} (21)

The matrix dimension is N x N for the window having the
width equal to (N — 1)At.

Bilinear Form Value for Harmonic Signals

Let us assume that the fundamental harmonic voltage and
current signals are defined as

Ucos (ny + ¢)
I cos nyp (22)

I

Uy

iﬂ
where: U, I - signal magnitudes
¢ - phase between two samples
P = "T‘:’“ - electrical angle between two samples
w, - system fundamental frequency
wy - sampling frequency

The bilinear form value for the harmonic signals, at the
moment n, defined by equation (22), is given as:

N-1N-1

Z 2 hkmun—kin—m (23)

k=0 m=0

= UTHI

BF,

Further expansion of the equation (23) indicates that the
bilinear form may be expressed as a sum of a constant term
BF*¢ and a variable term BF? :

BF, = BF* + BF® (24)

These two terms can be represented as a function of the
weight matrix H:

BFe = L) cos [8 + L HY(e)]  (25)

BF, = %|H"(e'“’)| -cos 2np + ¢ + L H*(e7")]  (26)

where the related weight matrix polinomials H¢ and H? are
represented as:

+N-1
He(p)= Y, hi-p (27)
. r=—N+1
with:
B =33 him 0<k<N-1 (28)
kE m
k—m=r 0<m<N-1
and: _
H'(p)= 3 h}-p" (29)
r=0
with:
R =33 him 0<k<N-1 (30)
k m
k+m=r 0<m<N-1

Analysis of the equations (24), (25) and (26) indicates that
the constant part BF* can be used to determine power and line
parameter values. Therefore, it is desirable to define conditions
that will make the variable part BF® to be equal zero. The
variable term will vanish if the following condition is fulfilled:

H'(e™ ™) =0 (31)
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This is satisfied when e~7¥ is a zero of the polynomial H*( D).
Furthermore, the variable term will vanish for any v if H*(p)
is indentically equal to zero. This is the case when:

B =0 r=0,1,---,2N -2 (32)

Matrix Conditions for Different Measurements

The first set of conditions is related to the selection of ma-
trix H so that the requirement (31) is satisfied. As indicated by
the expression (32), this means that the sums of the matrix ei-
ements in the anti-diagonal and all the sub-anti-diagonals have
to be zero. Such matrices will be named constant-valued.

The next set of conditions is related to selection of the
polynomial H°(e~¥) so that the bilinear form value gives active
and reactive power. )

The active power calculation requires that the H°(e™7¥) is
real for any value of the electrical angle, and equal to 1 for a
given value of the angle. Therefore, if the following condition

1s satisfied: )
H(e) =1, =40 (33)

then it can be seen from equation (25) that:
BF":%{cosgb:P (34)

It can be easily shown that the symmetric matrices defined
as

A=AT (35)

satisfy the requirement that their value is always real, i.e, that
their imaginary part is always equal to zero:

Im{A%(e ™)} =0, V9o (36)

However, the symmetric matrices are not necessarily constant-
valued, that is also the required condition as expressed by equa-
tion (31). One way to construct a constant-valued symmetric
matrix A is to choose its elements to satisfy the following con-
ditions:

Y an=-%"  r=012.-N-1 (37
k m

0<k<N-1, 0<Sm<N-1
> =0
k m

0<kSN-10<m<N-1 k>mk+m=2r+1

If the following condition is also satisfied:

¥ =10 (39)

then a weight matrix for real power calculation can be con-
structed as 1

=== A
Re{A%(e7V°)}
The reactive power calculation requires that the polynomial
H¢(e~#") is imaginary for any value of the electrical angle, and
equal to —j for a given value of the angle. Therefore, the
following condition needs to be met:

H(e™¥) = —j,

k>mk+m=2r
r=0,1,2,---N-1 (38)

Re{4%(e*)} #0,

H, (40)

¥ =1 (41)
In this case the equation (25) gives the value of the reactive
power: Ul
BF‘=—sin¢=0Q
It can be shown that the skew-symmetric matrices defined

as:

BT=-B (42)

satisfy the requirement that their value is always imaginary,
i.e, that their real part is always equal to zero:

Re{B(e™ )} =0, V¢ (43)
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However, these matrices always satisfy the following condi-

tion as well:
B'(e™¥)=0, V¢ (44)

which is needed to make the variable part of the bilinear form
to be equal to zero. In addition, if the following condition is

satisfied: )

Im{B(e )} #£0, ¢ =1bo (45)
then a weight matrix for reactive power calculation can be
constructed as:

1

HQ:W‘BC(C-N’—")}“B (46)

The transmission line parameter calculations are based on
active and reactive power calculations. Using the following

expressions:
U %cos ¢ P
R=Feso= Z = (RMSIp (47
U . Ysing Q
wol = Tein ¢ = 25— = prsry (48)

it is possible to determine the required bilinear form matrices
from the related power measurement weight matrices. The
only additional value that needs to be defined is the RMSI
value. The condition for RMSI calculation can be obtained
from expression (25) by taking into account that both signals
in the bilinear form are the current signals and they are equal
with no angle difference between them:

2
BF® = %Re{Hc(e_”’)} (49)
This brings the new condition:
Re{H(e)} =1 (50)

which is needed to make equation (49) to represent the RMSI
value. This value is denoted as the quadratic form (QF):

QF° =1, (51)

ALGORITHMS WITH LOW SENSITIVITY
TO FREQUENCY CHANGE

Power Measurements

The frequency change causes the change in the values of ex-
pressions (27) and (29), so that the required conditions given
by equations (31), (33) and (41) are not satisfied. This implies
that 1t is desirable that polynomials H* and H® show low sen-
sitivity to frequency change. In order to derive the required
conditions, let us represent the bilinear form expression, given
by equation (24), using the Taylor series expansion. This ex-
pansion is performed around the point g, which is the desired
frequency out of the range of the frequency values 1.

BE(#) = BE() + o), Lot

1
dzBFn(¢)| (d) _ ¢a)2
dpr T2l

If only the first two terms are considered, then the low
sensitivity frequency change translates into the condition that:

+

. (52)

dBF.(¢) _ _
W 0 for =1, (53)
This further means that the following conditions are also
satisfied: AH ()
(e
—_ = 4
o 0 for =1, (54)
dH (e %)
ap =0 for ¥ =1, (85)

If the weight matrix H is selected to satisfy condition (32).
then the requirement (54) is satisfied. As far as the polynomial
H°® is concerned, both real and imaginary parts have to satisfy
the condition (55):

dRe{H¢(e~")} _

o 0 for ¥ =1 (56)
dIm{He(e~
W:o for ¥ = o (57)

If the active power calculation is considered, based on the
fact that the weight matrices should satisfy the conditions (35)
and (36), the imaginary part of the polynomial H¢ is indenti-
cally equal to zero. Therefore, the condition (56) is the only
additional condition required to obtain the low sensitivity to
frequency change characteristic.

If the reactive power calculation is considered, based on the
conditions (43) and (44), the real part of the polynomial H® is
identically equal to zero. Therefore, the condition (57) is the
only additional condition required to obtain the low sensitivity
to the frequency change characteristic.

Line Parameter Measurements

Conditions for the calculation of parameter R can be de-
rived by using equations (19), (31), (36) and (39). As a result,
the following weight matrix conditions for the estimated value
R are obtained:

- UTcr
R= g1 (58)
where: )
C'(e)=0 forVy
C°(e™7*) = real number (59)
E'(e¥)=0 forVy
E°(e™7¥) = real number ' (60)

Observing the condition (40) and (49), it is possible to write
the expression (58) in the following form:
_ Re{Ce~*)}:P _ Re{C(¢c#¥)}-P
T ReAB(e )} L Re{B(e) Ty,

=5

(61)

Taking into account equation (47), the following relation is
obtained for equation (61):
=~ Re {Ce(e=*)}
" Re{E(e)} .
Analysis of the equation (62) suggests that the estimated

value R is equal to the actual value R, for any value of the
angle 1, if polynomials C° and E° are equal:

C(e™¥) = E*(e7¥), forVy (63)

(62)

This translates to the following condition for the corre-
sponding weight matrices:

C=E (64)

Therefore, the condition (64) needs to be satisfied in order
to define an algorithm for calculation of the line parameter R
so that this algorithm is insensitive to the frequency change.
Obviously, in this case the condition (56) is also satisfied.

The conditions for the calculation of the parameter L can
be derived in the similar manner by observing equations (19),
(31), (43) and (45). In this case the estimated value L can be
obtained as:

- UTDI
= —— 65
Luwo TTEI (65)
under the following conditions
D*(e™¥)=0 forVy

D%(e™’%) = imaginary number (66)



E'(e™)=0 forVe
E*(e™7Y) = real number (67)

Further derivation 1s based on the equations (46) and (49).

Using these equations it is possible to write the equation (65)
as:

= 1 Im {D°(e~7¥}
[ = ——imire™
wg Re {E<(e~iv} L (68)
_LIm{D(e)} Q.
wo Re {Ee(e~i¥)} I2

|

)

Taking into account equation (48), the following relation is
obtained for equation (68):
1 Im{D*(e~i%)}

b= & {E*(e=1%)}

- Lw (69)

Further rearrangements of equation (69) are needed:

;_ Im{D(e) Lo At -
T Re{E(e=i} w, Ot (
to obtain the final expression as:
~ S e=iv
f= ImDC) v (71)

Re{E(e=i")} ¢

In order to make the estimated value L to be equal to the
actual value L, it is needed that:

—Im {Dc(e‘j”‘)} ¥ = Re {E*(c7")} g (72)
If also the conditions (56) and (57) are needed in order to

provide the low sensitivity to the frequency change, then the
new condition for the equation (72) is:

d C( o] —_ d c( ,—F
~%Im{D (e w),/,}‘w:%_%m{}: (7 )ipo }

ALGORITHM TESTING

Power Measurements

(73)

Y=t

Algorithm P1 - This algorithm is derived for active power
calculations for 2-sample data window. As it is shown in the
Appendix I, the weight matrix is given as:

_ 1 1 —cos g ]
P 2sin®yy | —c0s o 1

If we take the frequency of fo = 60Hz, since %, = 60° the
polynomials H¢ and H” are respectively equal to:

(74)

H“(e‘j""’) = _§ cos ¥y + % =1 (75)

Hv(em%) =0 (76)

The equations (75) and (76) represent conditions for active
power measurement. However, if the frequency should change,
then the value of both polynomials changes and the value of the
calculated power changes as a consequence. The percentage of

the power change, for any given frequency change is given in
Table I.

Table I. Active Power Errors for 2-Sample Algorithm

% ] ~10.000 [ —5.000 [ —2.000 fo +2.000 | +57000 [ +10.0
) 0.942 [ 0.970 8T [He =11 T1.0I12| 1.031 1.0
P% | —6.000 [ —3.000 | —1.000 0 +1.000 | +3.000 [ +6.0

Algorithm P2 - This algorithm is derived for active power
calculation for 3-sample data window. Derivation similiar to
the one give for algorithm P1 will produce the following weight
matrix:

00 -1 -
W= V% 0 (
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In this case the sum of anti-diagonal elements is equal to
zero which means that the variable term BFY = 0 for any .
The constant term is given for 1), = 60° as:

He(em V) = g sin?y (78)

The value of the constant term for frequency of f = 60Hz
is equal to one, that is the condition for active power measure-
ment. However, as the frequency changes, the constant term
will change and the calculated active power will change as a
consequence. The results of this change are given in Table II.
Analysis of the errors at reference frequency is given for dif-
ferent sampling rates. Errors'for power calculations P}, P}
and P} correspond to the electrical angle between samples of
¥ = 60°,45° and 10° respectively.

Table II. Active Power Errors for 3-Sample Algorithm

f% —5.00] =250 fo [ +2.50] +5.00
Pl% | —630| =330 0 | +2.90| +5.80
7% —5.00 [ -2.00 [ fo | +2.00| +5.00
P2% | —880| —330| 0 | +3.10] +8.60
f7% [ -T10.00 | =5.00 | fo | +5.00 [ +10.00
P7% | —18.70 | —9.30 | 0 | +10.50 | +20.80

Algorithm Q1 - This algorithm is derived for reactive power
calculation for 3-sample data window. Derivation similar to the

one given for algorithm P1 will generate the following weight
matrix:

1 00 ~1
=———(00 0 79
Ho 2sin2¢ | 1 g 0 (1)

Again, the variable part of the bilinear form is equal to
zero, and the constant part can be presented as(fory = 15°):

He(e™i¥) = —2jsin2¢ (80)

The analysis of the expression (80) indicates that this al-
gorithm has a very low sensitivity to frequency change at the
reference frequency. The results of the power calculation errors
obtained as a result of the sampling rate change are given in
Table III. The calculated errors for reactive power @} and Q?
correspond to the electrical angle between samples of 1 = 15°
and 45° respectively.

Table III. Reactive Power Errors for 3-Sample Algorithm

f% 1 —10.00 [ —5.00 | fo | +5.00 [ +-10.00
Q% | —9.30| —430| 0 [+4.20[ +8.90
f7 | —10.00 [ =5.00 | fo | +5.00 [ +10.00
Q2% | —1.30| —030[ 0 | —030] —1.30

Algorithm.P3 - This algorithm is derived to satisfy the low
sensitivity to frequency change requirement. As it is shown in

Appendix II, the weight matrix for 4-sample data window is of
the following form:

0 0 a b
0 -2¢ —b 0
H, = a —(z 00 (81)
b 0 00
where:
_ cos2ip, + cos?y, _ cosy,
T T deinig, O T Tsinty, (82)

The results for active power calculation errors due to the
sampling rate change are given in Table IV. As it can be ob-
served, the results are given for two different sampling rate
that produce power calculation errors P} and P? for the co
responding electrical angles of 1 = 60° and 30° respectively
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Table IV. A_ctive Power Errors for 4-Sample Algorithm
with Low Sensitivity to Frequency Change.

% =5.00 | —2.00 [ fo [ +5.00 | +10.00
-0 -0.10

PI% | —0.80 —0.15 ~0.60
5.00 | +10.00

7% [ =10.00 [ =5.00 | Jo
PI% | —3.10] -080] 0 | —0.70| —3.60]

Algorithm P4-This algorithm is also defined to satisfy the
low sensitivity to frequency change requirement. However, the
difference befween this algorithm and algorithm P3 is in the
level of the “insensitivity” requirements. This algorithm has
the following additional requirement:

d2 He _

dgr

If the condition (83) is satisfied, and if the 5-sample algo-
rithm is selected, then the related weight matrix is given as:

(8%)

0 0 —a b —c

0 2 =b 0 0
Hy={-a —b 20 0 (84)

b 0 00 O

—c 0 00 O

In this case the power calculation errors are reduced even
more. Thisis illustrated in Table V for different sampling rates
that correspond to ¥ = 60°,30° and 45°. The related power
error calculations are P}, PZ,andP; respectively.

Tanle V. Active Power Error for 5.Sample \lgorithm

with Low Sensitivity to Frequency Change.

% —5.00 —2.007 fo +2.00 [ +5.00
Pi% | —0.01]|~0.35- 1077 0 [ +0.35-10~2| +0.05
J% | —10.00 =5.00 | fo +5.00 | +10.00
P% | —0.60 —0.08 1 0 +0.09 [ +0.78

% | —10.00 =5.00 | fo +5.00 | +10.00
P3% | —0.50 —0.10] 0 +0.10 | +0.60

Line Parameter Measurements

Algorithm L1 - This algorithm is based on 2-sample data
window and has the following weight metrics:

__ L 1o -1 1 1 0
D—Zsim/)[l 0]’ E—Zsinzw[—2603¢ 11 (85)

However, this algorithm does not satisfy the low sensitivity
to frequency change requirement since it produces the vari-
able part E”. Therefore, the expression for calculation of the

parameter L, using this algorithm, is equal to:

—Im{D(e”™)} ¥
E*(e7%) + Re{E<(e=7)} %0
This algorithm is quite inaccurate when the frequency changes.
If the oscillatory term EY is taken out, the results obtained for

calculation of L are improved. The results for this case are
given in Table VI for several values of the sampling rates that
correspond to ¢ = 60°, 45° and 30°.

L= L (86)

Table VI. Parameter L Errors for 2-Sample Algorithm.

) Algorithm L2 - This algorithm is based on 3-sample data
window and has the following weight matrices.

0 a0 00 -1

D = —a 0 0 3 E = 0 2 0 (87)
000 -1 0 0

The condition that:

Re{E*(e77"°)} = —ImD*{(e77*)} (88)

produces the requirement a = 2siny, that should be used in
expressions (89) in order to calculate the parameter L. The
results of the parameter L calculation errors for different sam-
pling rates, are given in Table VII. As it can be observed, the
sampling rates of » = 60° and 45°, and 30° correspond to
parameter values L3, L2, L3 respectively.

Table VIL. Parameter L Errors for 3-Sample Algorithm.

T% | —5.00 | —2.00 [ fo | +2.00[ +5.00
LI% | —1.90|—0.89] 0 | +0.68 | +2.00
7% | —10.00 | —=5.00 [ fo | +5.00 | +10.00
I2% | —2.00| 1200 [ +1.00| +2.20
7% | —10.00 | —5.00 | fo | +9.00 | +10.00
I3% | —0.90]—0.50] 0 | +0.40 +1.00

Algorithm L3 - This algorithm is designed for low sensi-
tivily to Irequency change. If the 3-sample data window is
considered, then the required weight matrices are given as fol-

lows:
00 -1 0 a b
D= 02 0|, E=|—-a 00 (89)
-1 0 0 -5 00

The low sensitivity to frequency change requires that the fol-
lowing conditions are satisfied:

d .
-~ Lipetp el
Y=t =90

(90)
in addition to the requirement (88). As a result, the following
values for the parameters a and b are derived:

2%, + sin2p, —sint, + P08,
a = —_——_—, b = _—__——
Po8int,

1[)031‘”1/)0

This set of conditions is derived in the Appendix IIL Fi-

nally, the error calculations for parameter L are given in Table

VII for several sampling rates. The parameter L calculation er-

rors L}, L2, L, and L} are shown for sampling rates of ¢ = 60°,

45°, 30°, and 10°. The results show indeed a very low sensitiv-
ity to frequency change.

d _
%[Im{D ()}

(o1

Table VIII. Parameter L Errors for 3-Sample Algorithm
with Low Sensitivity to Frequency Change.

F% [ —10.00 [ =5.00 [ =2.00 [ fo | +2.00 [ +5.00 [ +10.00
LT% | =11.00 | =5.30 | —2.00 | 0 | +1.90 | +4.60 | +9.10
% | =10.00 | —=5.00 | =2.00 | fo | +2.00 | +5.00 | +-10.00
2% | —10.70 | =520 [ —2.10 [ 0 | +1.80 | +4.60 | +9.20
7% | —10.00 | =5.00 | —2.00 | fo | +2.00 | +5.00 [ +10.00
3% | —11.20 | —5.60 | —2.60 | 0 | +1.60 [ +4.40 [ 48.90

% | —10.00 | —5.00 | —2.00 [ fo | +2.00 | +5.00 +10.m
L% ~0.09 | —0.10 | —0.12{ 0 [ -0.10] —0.10 | —0.30
F% | =10.00 | —5.00 | —2.00 | fo | +2.00 | +5.00 | +10.00
L% ~033| —060| —055] 0 | —0.40]—0.40 | —0.30
7% | —10.00 [ —5.00 | —2.00 | fo | +2.00 | +5.00 [ +10.00
L% $0.18 | +0.14 [ +0.10[ 0 [4+0.10] 0.19] +0.13
% 210200 —5.00 | —2.00 | fo | +2.00 | +5.00 | +10.00
L% 10.78 | +0.75 | +0.77 | 0 | +0.80 | +0.70 | +0.72
CONCIUSIONS

Use of the bilinear form representation of current and volt-
age signals has provided quite convenient and powerful method-
ology for synthesis of the new class of digital signal processing
algorithms. These algorithms can be used for calculation of
power and line parameter values related to power system mea-
surements. The major advantages of the new approach can be
summarized as follows:



e The new approach is convenient because it defines the
synthesis methodology for algorithm design. This method
ology can also be used to make a consistent analysis of
the existing algorithms which was difficult to perform in
the past when only the heuristic definition of these algo-
rithms were given.

The new approach is powerful because it provides a method-
ology for optimization of the algorithm performance. In
particular, the low sensitivity to the frequency change
optimization for the algorithm was demonstrated by de-
signing several algorithms for power and line parameter
measurements with a very low sensitivity to frequency
change.
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Appendix I
Conditions (31) and (32) translate into:
at(cHb)e ¥ +g.e =0
(4-1)
be’ 4 (a+g)+c-e V=1

Solving this set of equations gives coefficients of equation (74).
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Appendix II

The polynomial H® and its derivative are:

H® = 2bcos3tp + 2acos2yp — 2bcosyp — 2a (A-2)
dH® . .
W= —6bsin3y — dasin2i + 2bsiny (A-3)

Solution of these equations yields the values of the parameters
2 and b as they are given by equations (82).

Appendix III
The related polynomials are as follows:
Re{E} = 4sin®y, Im{D°} = 2asinyy + 2bsin2p (A —4)
The condition (72) gives:

a = —2siny, — 2bcosy, (A-5)
The condition (90) gives:
b= —sini, + P,cos1p, (A-6)

Posinp,

Solution of equations (A-5) and (A-6) gives parameters given
in equation (91).
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