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Abstract 
 

This paper describes a Weather Impact Model 

(WIM) capable of serving a variety of predictive 

applications ranging from real-time operation and day-

ahead operation planning, to asset and outage 

management. The proposed model is capable of 

combining various weather parameters into different 

weather impact features of interest to a specific 

application. This work focuses on the development of a 

universal weather impacts model based on the logistic 

regression embedded in a Geographic Information 

System (GIS). It is capable of merging massive data sets 

from historical outage and weather data, to real-time 

weather forecast and network monitoring 

measurements, into a feature known as weather hazard 

probability. The examples of the outage and asset 

management applications are used to illustrate the 

model capabilities. 

 

1. Introduction  
 

Unfolding weather conditions pose a major threat to 

the electricity networks due to their high level of 

deterioration susceptibility to weather elements [1]. 

Combined, 75% of power outages are either directly 

caused by weather-inflicted faults (e.g., lightning, wind 

impact causing surrounding vegetation to contact 

transmission lines), or indirectly by equipment failures 

due to wear and tear, partially due to weather exposure 

(e.g. prolonged overheating or exposure to lightning-

induced over-voltages) [1]. 

The number and frequency of power outages is 

dramatically increasing [2]. Even though over 95% of 

outages are shorter than four hours [2], the US economy 

loses $104-$164 billion a year to outages and another 

$15- $24 billion to power quality phenomena [3-5]. This 

proliferation of grid outages and associated surges is 

caused by “severe” weather due to high wind, lightning, 

snow/storm, floods, etc., which is caused by increased 

variability and extremes in seasonal weather patterns. 

The “Catastrophic” weather (hurricanes and tornadoes) 

accounts for only 7% of large blackouts [6], with more 

than 50% due to severe or extreme weather. The 

atmospheric conditions most conducive to severe 

weather are expected to increase [7-9]. This increase in 

non-catastrophic severe weather events is causing 

increases in outage frequency, resulting in huge 

economic, social, and environmental risks to power 

systems and its customers. 

There have been some efforts to develop a weather 

impact assessment in recent years. The time-varying 

weight factors were introduced as a measure of weather 

impact to component failure rates and restoration times 

[10]. Historical weather data were correlated with 

historical outage data in order to develop a damage 

forecast model for restoration [11]. Variety of studies 

have been addressing the impact of extreme [12-14] and 

catastrophic [15,16] weather on power system 

infrastructure. The impacts of large scale storms and 

hurricanes have been evaluated [12], while the risk 

analysis has been performed for evaluation of wind 

storm impacts [13]. The impacts of Hurricane Sandy 

have been evaluated as suggested in [14]. A 

probabilistic framework for assessment of extreme 

weather conditions impact on the grid [15], and also the 

system restoration after the extreme weather events is 

studied in [16].  

There are two limitations of the existing weather 

impact methods that our paper is addressing: 1) although 

existing solutions have good performances for 

improving the post-outage restoration process, the 

predictive capabilities that would enable pro-active 

maintenance and operation are missing, and 2) most of 

the studies are focused on the extreme and catastrophic 

events, while there is a lack of a weather impact 

assessment for the daily severe weather conditions.  

The targeted applications for weather hazard are 

described in Ch. 2. The overview of weather data 

sources is provided in Ch. 3 followed by Ch. 4 

description of the design of the WIM. Predictive 

capabilities of the model are described in Ch. 5, while 

the results are reported in Ch. 6. Final conclusions are 

provided in Ch. 7. 



2. Predictive Spatiotemporal Applications 
 

The assessment of weather impacts on power 

systems must be spatiotemporally granular (multi-level) 

to effectively deal with a continuity of evolving 

conditions. The knowledge needs to be presented in a 

spatiotemporal framework with highly accurate geo-

referencing and geo-analytics for correlating weather 

and physical layout of the electricity grid. Spatially and 

temporally coordinated measurements coming from 

both utility infrastructure and weather data sources need 

to scale to the temporal dynamics of the knowledge 

extraction process. 

The predictive outage management framework 

offers automated tools for real-time decision making for 

weather related outages leading to the outage area 

prediction, fast outage location, efficient post-outage 

asset repair and timely network restoration procedures. 

With the knowledge of approaching weather hazards, 

one to several hours in advance, the appropriate outage 

mitigation or fast outage restoration strategies can be 

planned.  
The predictive assets management framework 

evaluates weather impacts on deterioration and failure 

rates of utility assets such as insulators, surge arresters, 

power transformers, and circuit breakers providing 

knowledge for planning optimal maintenance and 

replacement schedules. Asset management typically 

deals with long-term analysis (days, months, years). 

Hazard maps generated continuously one to couple of 

days in advance provide an opportunity for creating 

proactive maintenance schedules leading to a decrease 

in probability of catastrophic asset failures and 

consequently cost savings. 

 

3. Weather Data 
 

Two types of weather impact are of particular 

interest to this study: 1) long-term weather impact on 

electricity network (expressed in days, months, years) 

such as prolonged exposure of assets to high seasonal 

temperatures, and 2) instantaneous impacts such as 

lightning strikes affecting utility assets and causing 

faults during storms. The focus of this paper is to assess 

impacts of day-to-day weather impacts, such as thunder 

storms, high winds, and significant temperature 

fluctuations. It is important to distinguish such cases 

from the assessment of catastrophic weather impacts 

where the predictions are focused on weather forecast 

only during the short time period of the catastrophic 

event. In our application, we observe variety of weather 

impacts that network is experiencing over time. 

Combined, these day-to-day weather impacts cause a 

majority of weather-related stresses on the network.  

Overview of the weather data sources with various 

characteristics is presented in Table I. A variety of 

historical weather data shown in Table I is collected by 

different technologies: 1) land-based sensor 

measurement stations, 2) radio detection and ranging 

(Radar), and 3) satellite. The land-based stations collect 

Table I. Weather Data Sources and Characteristics 

Source Data 

Type 

Temporal 

Coverage 

Spatial 

Coverage 

Temporal 

Resolution 

Spatial 

Resolution 

Measurements 

Automated 

Surface 

Observing 
System  

(ASOS) [17] 

Land-

Based 

Sensor 
Stations 

Data 

2000-

Present 

USA 1 min 900 

stations  

Air Temperature, Dew Point, Relative 

Humidity, Wind Direction, Wind Speed, 

Altimeter, Sea Level Pressure, Precipitation, 
Visibility, Wind Gust, Cloud Coverage, Cloud 

Height, Present Weather Code 

Level-2 Next 
Generation 

Weather Radar 

(NEXRAD) 
[18] 

Radar 
Data 

1991-
Present 

USA 5 min 160 high-
resolution 

Doppler 

radar sites 

Precipitation and Atmospheric Movement 

NOAA 

Satellite 

Database [19] 

Satellite 

Data 

1979 - 

Present 

USA Hourly, 

daily, 

monthly 

4 km cloud coverage, hydrological observations 

(precipitation, cloud liquid water, total 

precipitable water, snow cover, and sea ice 

extent), pollution monitoring, smoke detection, 

surface temperature readings 

Vaisala U.S. 
National 

Lightning 

Detection 
Network [20] 

Lightning 
Data 

1989-
Present 

USA Instantaneous Median 
Location 

Accuracy 

<200m 

Date and Time, Latitude and Longitude, Peak 
amplitude, Polarity, Type of event: Cloud or 

Cloud to Ground 

National 

Digital 
Forecast 

Database 

(NDFD) [21] 

Weather 

Forecast 
Data 

Present – 

7 days 
into future 

USA 3 hours 5 km Wind Speed, Direction, and Gust, Temperature, 

Relative Humidity, Convective Hazard Outlook, 
Prob. Critical Fire, Prob. Dry Lightning, Hail 

Probability, Tornado Probability, Probability of 

Severe Thunderstorms, Damaging 
Thunderstorm Wind Probability, Extreme Hail 

Probability, etc. 

 



variety of measurements at their location. The most 

precise measurement system is 1 min Automated 

Surface Observing System (ASOS) [17]. Radar uses 

radio waves to track storm movements where different 

radio wave reflectivity levels are presented as different 

colors on a map [18]. Satellites provide global 

environmental observations [19] such as cloud 

coverage, hydrological observations (precipitation, 

cloud liquid water, total precipitable water, snow cover, 

and sea ice extent), pollution monitoring, smoke 

detection, surface temperature readings, etc. Lightning 

data is collected by National Lightning Detection 

Network operated by Vaisala [20]. 

National Digital Forecast Database (NDFD) [21] 

provides weather prediction for variety of weather 

parameters as presented in Table I. NDFD uses 

Numerical Weather Prediction (NWP) models. Some of 

the models that are used for weather forecast and their 

capabilities are [22]: 1) Global Ensemble Forecast 

System (GEFS) uses 21 different forecasts to generate a 

global-coverage weather forecast model; 2) Global 

Forecast System (GFS) contains four different forecast 

models working together in order to provide accurate 

picture of weather changes; and 3) North American 

Mesoscale (NAM) weather forecast model developed 

for North America region is based on Weather Research 

and Forecast (WRF) model [23]. 

 

4. Risk Analysis Based on Weather 

Impacts  
 

The use of risk management can decrease the 

number of outages and mitigate consequences through 

optimal management of the balance between an 

acceptable risk level and preventive maintenance 

strategy. The risk-based framework is a key to 

application of pro-active risk mitigation measures based 

on the optimal ranking of risk reduction factors. The 

weather-related risk analysis can be described as [24]: 

R=H×V×I (1) 

 where hazard H defines the probability of a severe 

weather impact; vulnerability V defines the probability 

of a certain event in the network occurring due to a 

severe weather condition; and  I is an impact of the event 

(economic and social). While vulnerability and impacts 

depend highly on application of interest, it is possible to 

develop a Hazard Model that could serve a variety of 

applications ranging from real-time operation and day-

ahead operation planning, to assets and outage 

management. 

The proposed hazard model is capable of assessing 

the variety of weather and environmental impacts, and 

combining these impacts into a variety of measures of 

interest to each specific application. The process of 

building a weather hazard model input starts with the 

raw measurements taken by different sensors, such as 

temperature and wind speed sensors in land-based 

weather stations, as well as radar, and satellite weather 

observations. Since the data comes with different spatial 

and temporal resolutions, it is critical to correlate all the 

data as an input to a unified spatiotemporal model. As a 

result, a variety of features of interests can be extracted 

from such fused data. A selection of weather impacts of 

interest is based on a set of extracted features relevant to 

a given application.  

Different applications may depend on different 

weather impacts. For example, the lightning protection 

application would primarily rely on the information 

about lightning, with the additional insight into 

temperature, pressure, humidity and precipitation data. 

On the other hand, the vegetation management 

application would be highly dependent on wind 

parameters and precipitation. An important 

characteristic of the model is its capability to generate 

the hazard value for different types of impacts tuned to 

the application of interest. The ultimate goal is to create 

a hazard probability for each moment in time. 

 

4.1. The WIM Testbed Architecture  
 

The WIM testbed or integration of Big Data related 

to weather impacts on electric transmission and 

distribution is presented in Fig. 1. The testbed is 

implemented using various commercial solutions, such 

as Mitsubishi wall display [25], OsiSoft PI Historian 

[26], and Esri GIS solution [27]. The PI Historian 

platform is used for temporal analysis and visualization. 

The ArcGIS and PI platforms are loaded with electric 

utility assets data and weather data from all the sources 

of interest.  The wall display presents the analysis 

preformed on one or multiple operator consoles that 

may be configured for production type decision-making 

aimed at gaining either the operating or training 

experiences.    

The developed extension to ArcGIS allows the 

integration and spatiotemporal correlation of the 

standard types of data and models, as well as novel data 

sources such as weather and vegetation data. The system 

provides interfaces to software packages such as 

MATLAB, OpenDSS, Anaconda (Jupyter) using 

Python. This testbed demonstrates how the traditional 

Big Data sources describing attributes of the power grid 

itself can be spatiotemporally correlated with novel Big 

Data sources describing the environment and other GIS 

and GPS features to enable solutions that provide better 

decision-making capabilities. The PI system provides a 

highly reliable data management infrastructure capable 

of handling large quantities of real-time data coming 

from weather data sources. The PI system enables long-



term data storing (PI historian), as well as flexible data 

analysis (PI ACE) for real-time decision making.  

 

4.2. Spatial Correlation of Data 

 
Spatial correlation of data is presented in Fig. 2. The 

locations of utility network assets are contained in the 

utility’s geodatabase. This geodatabase is first extended 

with historical outage data that are geocoded into a point 

shapefile. Lightning data obtained from Vaisala 

contains geographical location in the csv file, which is 

converted to the lightning point shapefile, and added to 

the database. For each network tower, the lightning 

frequency is calculated from the historical data collected 

in the radius of 1 km around the tower.  

Weather data is associated with the weather stations 

that are sparsely located over the area. Thus, the weather 

parameters need to be spatially interpolated in order to 

estimate their values at each location in the network. 

The network area is split into grid. The weather 

parameters are estimated for each grid cell based on the 

closest three weather stations’ data.  
For each lightning outage, the set of lightning strikes 

in its vicinity is generated and transmitted to the 

 

Figure 1. Overall architecture of the weather testbed solution  

 

Figure 2. Spatial Correlation of Data 



temporal correlation procedure presented in the next 

section. This is the first step in determining which 

lightning strike is associated with which lightning 

caused outage. 

The final output of the spatial correlation is a set of 

weather parameter maps for each observation, and a 

historical outage map with all the attributes integrated in 

the outage shapefile. These two databases are then 

transferred to the temporal correlation procedure that is 

described next.  

 

4.3. Temporal Correlation of Data 
 

Temporal correlation of data is presented in Fig. 3. 

The goal of temporal correlation is to associate all the 

necessary parameters with each historical outage. First, 

the time zone conversion is performed to ensure unique 

UTC time reference. Then, each outage is set through 

the loop that extracts the weather parameters based on 

the specified time of the outage. Different weather 

parameters come with different temporal resolutions 

and temporal accuracies. Therefore, it is necessary to 

perform linear interpolation to estimate the exact value 

of weather parameters at the time of an outage. For each 

outage occurrence, the two closest measurement 

moments are determined and used for the interpolation. 

In case of lightning outages, the associated lightning 

strike is determined based on both the spatial and 

temporal closeness to the recorded historical outage, and 

all the lightning data for that lightning strike are 

imported to the outage file as they are (without 

interpolation).  

The final product of the temporal analysis is a 

historical outage file containing all the necessary 

weather parameters for each outage. This file has all the 

necessary data for calculation of weather hazard for 

multiple applications. The outage file is then used in the 

prediction model presented in the next chapter.  

 

5. Logistic Regression Model 
 

The goal of the WIM prediction is to estimate an 

outage event with a probabilistic score (hazard 

probability) using the various forecasted weather 

parameters identified in the previous section as features 

related to an outage event (lightning, vegetation, etc.). A 

probabilistic interpretation of the outage event outcome 

shall provide an intuition to the operator who can decide 

the level of impact importance of the predicted event 

outcome. Thus, a probabilistic classifier is used for 

building the models reflecting desired relationship 

between weather parameters and outage events.  

A binary classification model [29] is used to classify 

outage and no-outage events. The model can be 

described as the probability of an outage event (hazard 

probability) modelled as a Bernoulli distribution  

p(y=outage event|𝐗,𝐰)=Ber(y|σ(𝐰𝐓𝐗) (2) 

where input X is the set of attributes (weather 

parameters such as temperature, air pressure, wind 

direction, wind speeds etc.) and lightning current 

recorded during the outage event and w is the weight 

parameters of a linear function learned by minimizing a 

logistic loss function (eq. (4)). The output of an event is 

a probability score computed using a non-linear sigmoid 

function(σ(𝐰𝐓𝐗)).  

p(y=outage event|𝐗,𝐰)= σ(𝐰𝐓𝐗) (3) 

The logistic loss function is defined as a negative 

log-likelihood function of the Bernoulli distribution. 

Loss(w)= −∑ 𝑦log(σ(𝐰𝐓𝐗)) 

+ (1−y)log (1− (σ(𝐰𝐓𝐗)) 
(4) 

 
Figure 3. Temporal Correlation of Data 



The loss function is convex and can be minimized using 

gradient descent methods [30] for an unconstrained 

optimization.  

In our study, three types of hazard outage features 

are modelled using logistic regression, corresponding to 

lightning outage, vegetation outage and other outages. 

 

 6. Evaluation and Results 
 

The system is tested on a part of utility distribution 

network covering an area of ~2,000 km2. The system 

consists of ~200,000 poles, and ~60,000 lines. The 

historical outage and weather data was collected for the 

period from the beginning of 2011 up to the end of 2015. 

Over these five years, 505 weather related outages have 

been observed in the area. Table II summarizes the 

outage history.  
 

6.1. Testbed Experimental Setup  

 
In order to verify the proposed classification model 

we conducted a series of cross validation experiments. 

Three sets of datasets were extracted from the historical 

outage file each signifying a particular hazard event 

(lightning, vegetation and other outages).  Each dataset 

consists of 505 hazard events where the attribute of each 

event is denoted by X which consists of nine weather 

and lightning parameters, namely AirTemperature, 

DewPoint, RelativeHumidity, WindDirection, 

WindSpeed, Pressure, Precipitation, WindGust, and 

LightningCurrent. The output for each dataset is  𝑦∈
{0,1} indicating the occurrence or non- occurrence of 

the desired hazard event. 5-fold cross-validation 

experiments were conducted for each dataset and for 

each fold the Area under the Curve (AUC) [28] was 

reported (e.g. blue line in Fig. 5).  

The average AUC over 5 folds is also reported. Fig. 

5, 7 and 9 represent the Receiver Operating 

characteristic Curve (ROC curve) [28] for each the 

model learned for each of the 5-folds on the three hazard 

datasets. ROC curve is a graphical plot that illustrates 

the diagnostic ability of a binary classifier system as its 

discrimination threshold (hazard probability threshold) 

is varied. The true positive rate or sensitivity is plotted 

on the Y-axis against the false-positive rate or (1 – 

specificity) on the X-axis. The top left-most corner of 

the ROC plot indicates perfect classification results with 

an AUC of 1. Thus, AUC measure can be used to 

evaluate the performance of the classifier.   

 

6.2. Weather Hazard for Lightning Impacts 
 

The weather hazard for asset management is 

demonstrated on the transmission tower insulator 

coordination application. The main hazard is considered 

to be lightning, and only the lightning caused outages 

are observed by the prediction model. The weather 

hazard is the probability of a lightning caused outage on 

a specific tower in the network. 

The goal of asset management task is to assess the 

risk for each individual insulator in the network for each 

moment in time. Thus, the output of the developed 

hazard prediction model is used to calculate the risk for 

each individual tower and the results are presented as 

the point risk map in Fig. 4. In Fig. 5 the ROC analysis 

of 5-fold cross-validation along with AUC for each fold 

Table II. Historical weather caused outages 

Type Count Outages Impact 

vegetation 321 0.072 

lightning 120 0.017 

other 64 0.069 

total 505 0.058 

 

 

Figure 4. Asset Management Risk Map 

 

Figure 5. AUC for 5-fold cross validation on 

lightning outage dataset. 

 



and the average AUC is reported. It is observed that a 

high true positive rate can be achieved for detecting 

lightning hazard while keeping a small false positive 

rate. The average AUC is 0.85. 

 

6.3. Weather Hazard for Vegetation Impacts 

 
The weather hazard for outage management is 

illustrated with the vegetation outage application. The 

hazard is the probability of an outage caused by 

combination of vegetation growth and tree limb 

movement under severe weather conditions.  

The benefit for the outage management task is the 

prediction of the tree trimming section where the outage 

is expected to happen. This allows for the proactive 

maintenance of the targeted area to prevent the outage. 

Alternatively, the maintenance crew can be directed to 

the vulnerable network area and wait for the outage to 

happen in order to provide fast restoration response. The 

output of the hazard model is used to calculate the risk 

associated with each tree trimming zone. Example of the 

result is presented in Fig. 6. The ROC analysis for 

classification model on the vegetation dataset (Fig. 7) 

shows an average AUC of 0.7564. As observed from the 

ROC analysis, significant amounts of false positive rate 

need to be accepted to achieve higher true positive rates.  

 

6.4. Weather Hazard for All Weather-Related 

Outages  
 

In this example, all weather outages are considered. 

The distribution operator is interested in knowing about 

any potential weather-related threat to the network. The 

results of the analysis need to be presented in a way that 

would allow for a quick and optimal decision making in 

case of unfolding weather conditions.  

The hazard prediction is used to calculate the risk for 

the network areas in case of any kind of weather event. 

The recommendations about the network zones that are 

expected to have the maximum weather impact in the 

specific moment of time are made to the operator. The 

example is presented in Fig. 8. The ROC analysis for 

other outages besides lightning and vegetation is shown 

in Fig. 9. The average AUC is 0.88 across 5-fold cross-

validation datasets and visually it is observed that close 

to 80% true positive rate can be achieved with less than 

10% false positive rate.   

 

6.5. Evaluation of Unified Hazard Model  
 

In all cases, using unified logistic regression model 

based on all the input weather parameters shows better 

performances than observing individual applications 

separately. The Table III presents the comparison 

between average AUC for cases where all the data are 

used as part of unified prediction model versus the cases 

where only specific subset relevant to an application is 

used. This confirms the benefit of the unified weather 

hazard modeling within the utility that would serve all 

the departments. Fig. 10 presents the predicted hazard 

probabilities for multiple events in year 2015. Two cases 

were separated for each outage type: one where the 

outage occurred and one where there was no outage. 

From the Fig. 10 a) it can be observed that for most 

lightning outage occurrences the corresponding 

predicted hazard value is higher than the predicted 

hazard value in the periods when there was no lightning 

outage. In case of vegetation caused outages, the 

prediction accuracy is not as good as in case of 

lightning. It is important to observe that this work’s 

focus is on prediction based only on weather data. The 

vegetation data was not taken into account in this study 

and it is left for future work. With accurate vegetation 

data, the accuracy of prediction in case of vegetation 

caused outages is expected to improve.  

 

Figure 6. Outage Management Risk Map 

 

Figure 7. AUC for 5-fold cross validation on 

vegetation outage dataset. 

 



The Tables IV, V, and VI show the significance of 

predicting weather parameters for the three applications. 

For the lightning dataset, the p-values for 

AirTemperature, RelativeHumidity, Pressure and 

WindGust are small thus have high predictive power for 

lightning outage classification. Also, LightningCurrent 

has a small p-value, which means it is highly significant. 

In Table V for vegetation dataset, WindGust and 

WindSpeed has very low p-values, which is intuitive as 

mostly vegetation outage would be related to wind gust 

speeds.  It is interesting to see that LightningCurrent 

also has a very small p-value. This case can be explained 

by how the outage may have unfolded due to a tree 

falling; however, the tree might have broken due to a 

lightning strike.  In Table VI we find p-values for all the 

parameters to be low, which is also intuitive because 

other outages are possible for several weather factors 

which are not necessarily directly labeled as lightning or 

vegetation outage. In any case, some weather element 

must be the reason for the outage.  

 

 

Figure 8. Operation Risk Map 

 

Figure 9. AUC for 5-fold cross validation on all 

outage dataset. 

Table III. Average AUC depending on the dataset 

 
Lightning 

Outages 

Vegetation 

Outages 

All variables 0.84 0.75 

Lightning 

variables only 
0.83 * 

Vegetation 

variables only 
* 0.69 

 

 

Table IV. Predictive significance of weather 

parameters for lightning outages  

Lightning Dataset p-values Parameter weight 

LightningCurrent 3.99E-18 -1.737 

RelativeHumidity 0.008 2.188 

WindGust 0.013 0.364 

Pressure 0.028 0.358 

WindDirection 0.052 -0.268 

AirTemperature 0.053 2.184 

DewPoint 0.122 -1.797 

WindSpeed 0.237 -0.178 

Precipitation 0.661 -0.046 

Table V. Predictive significance of weather 

parameters for vegetation outages  

Vegetation Dataset p-values Parameter weight 

WindGust 1.53E-10 0.694 

LightningCurrent 2.52E-07 0.739 

WindSpeed 0.0009 -0.352 

Pressure 0.020 -0.203 

RelativeHumidity 0.112 0.649 

Precipitation 0.158 -0.130 

DewPoint 0.283 -0.596 

AirTemperature 0.405 0.439 

WindDirection 0.622 -0.042 

Table VI. Predictive significance of weather 

parameters for other outages  

Other outage Dataset p-values Parameter weight 

WindGust 1.89E-27 2.294 

WindSpeed 4.18E-15 -1.461 

RelativeHumidity 0.0001 1.840 

DewPoint 0.001 -1.980 

Precipitation 0.002 2.396 

AirTemperature 0.003 1.776 

Pressure 0.003 -0.321 

WindDirection 0.013 -0.281 

LightningCurrent 0.047 -0.319 

 



7. Conclusion  
 

The paper describes the implementation of a unified 

weather hazard framework by developing a WIM 

capable of predicting severe weather impacts. 

Following are the main contributions of our study:  

¶ An interface to the variety of weather data sources 

has been developed, including historical weather 

(land-based station, radar, satellite), and weather 

forecast models.  

¶ The design of a large-scale WIM evaluation testbed 

implementation for the utility control center 

decision-making has been presented. 

¶ The spatial and temporal correlation of weather data 

mapped to the utility outage data is demonstrated. 

¶ The logistic regression model has been used to 

calculate the hazard probabilities for different types 

of weather caused outages. 

¶ The proposed prediction model shows promising 

results where the average AUC is larger than 0.75 for 

all cases. 

¶ The unified prediction model shows better results 

than models developed for the individual 

applications.  

¶ The predictive significance of different weather 

parameters for the observed applications has been 

calculated. 

¶ The use of the WIM to improve weather hazard 

predictions is presented with two examples: 1) 

Outage management: identification of the network 

zone under the high risk of weather related outages, 

and 2) Asset management: identification of assets 

that are the most likely to be affected by severe 

weather.  

 

 

 

a) 

 

b) 

    

c) 

Figure 10. Hazard probabilities predicted in 2015 based on the training data from 2011 to 2014 for a) 

lightning, b) vegetation, and c) all weather outages. 
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