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Abstract—Accuracy of synchrophasor measurements is one of 

the key issues directing the application of synchrophasor/PMU 

technologies in both transmission and distribution systems. This 

paper introduces a dynamic phasor estimation method for 

PMUs/IEDs based on modified time domain hybrid method. 

Dynamic phasor is estimated using Taylor expansion, where 

frequency deviation is derived directly from fitting parameters 

to avoid magnification of fitting errors. Using the samples from 

less than 1.2 cycles, the proposed method constructs three 

windows and then performs recursive DFT on both signal 

samples and modeled signal for parameter estimation. By 

scrutinizing the position for time-tagging and approximation, 

the precision of hybrid method is further improved and the 

implementation is made easier. This method is essentially 

rendered immune to harmonics by incorporating DFT in 

synchrophasor estimation. Performance of the method is 

investigated through simulations that prove high precision 

under both static and dynamic signals from real power system 

scenarios.  

Index Terms—Hybrid time domain method, phasor 

measurement unit, power system measurements, synchrophasor 

estimation, Smart Grid. 

I. INTRODUCTION 

Synchrophasor and phasor measurement units (PMUs) are 
providing a higher resolution for capturing power system 
disturbances and enabling wide area protection and control 
schemes, hence serving as a new monitoring and control 
system that complements EMS in transmission systems [1,2]. 
Recently, applications of synchrophasor measurement 
technology (SMT) and PMUs in distribution networks, such as 
micro-synchrophasors [3], are drawing growing attention and 
investment [4-6]. Distribution systems are distinct from 
transmission systems in system topology, the availability and 
features of measurements, and the exposure to higher level of 
noise, variations and uncertainties [7]. Consequently, there are 
more challenges on the application of synchrophasors in 
distribution networks, and higher accuracy is required for 
synchrophasor algorithms, PMUs, and PMU-enabled IEDs.  

Synchrophasor algorithms proliferate since the inception 
of SMT. The most basic method is Discrete Fourier Transform 
(DFT), which models the input signal with nominal frequency 
sinusoid and its harmonics [8]. Over the years, revisions of 
traditional DFT method have been developed and can be 
classified into either time domain method or frequency 
domain method [9]. Frequency domain methods focus either 
on the design of high performance digital filters [10], or 
improvement and compensation of traditional DFT, such as 
interpolated DFT [11,12]. These methods generally feature 
heavy involvement of complicated signal processing and filter 
design techniques. Despite good frequency domain 
performance, due to the incompatibility between high 
frequency resolution and short window length, these methods 
struggle to find the balance between frequency response 
improvement and limiting transient response time.  

On the other hand, time domain methods in generally 
utilize least square based curve fitting techniques. Therefore, 
with adequately high sampling frequency that provides 
enough samples, window length does not significantly affect 
the performance of time domain methods. The most common 
time domain methods employ polynomial fitting on either the 
envelopes of transient power system signal waveforms 
[13,14], or on complex dynamic phasors [15,16]. Frequency 
performance of time domain methods is not as good as 
frequency domain methods since the modeling of envelopes 
assumes a slow varying process which may not be the best for 
all scenarios. A hybrid method that creatively incorporates 
DFT and envelope fitting is introduced in [17]. The method 
uses the DFT results on three consecutive moving windows 
for parameter estimation. However, the paper fails to consider 
accurate time-tagging for DFT results on consecutive moving 
windows, which consequently increases complexity, and 
results in systematic error caused by ill-conditioning.  

This paper improves the accuracy of hybrid method by 
scrutinizing the position for time-tagging which is proved 
theoretically and in simulations. Typically, 1.2 signal cycles 
are needed to guarantee high accuracy for signals in all steady 
and dynamic scenarios. Recursive DFT is utilized to simplify 
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the algorithm. The rest of the paper is organized as follows, 
Section II presents the interchangeability of the two most 
commonly used time domain methods. Proposed method is 
introduced in Section III where rigid theoretical proof is 
presented. Section IV gives the simulation results for the 
proposed method. Conclusion is outlined afterwards. 

II. TIME DOMAIN METHODS REVISITED 

Instead of transforming data samples to another domain 
(for example, frequency domain in Fourier methods), time 
domain methods process samples directly in time domain. The 
basic idea is to utilize simpler functions on a small region of 
interest to approximate the trigonometric functions which 
describe power system signals, as shown in (1). 

 𝑥(𝑡) = 𝑎(𝑡) 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 2𝜋 ∫∆𝑓(𝑡)𝑑𝑡 + 𝜑0) (1) 

where 𝑎(𝑡) represents instant amplitude, 𝑓0 is system nominal 
frequency, ∆𝑓 is instant frequency deviation, 𝜑0 is the phase 

angle at 𝑡 = 0 , 𝜑(𝑡) ≝ 2𝜋 ∫∆𝑓(𝑡)d𝑡 + 𝜑0 .denotes the 
instantaneous phase angle.  

The signal in (1) corresponds to the dynamic phasor shown 
in (2).   

 𝑝(𝑡) = 𝑎(𝑡)𝑒 j𝜑(𝑡) (2) 

Equation (2) can be approximated by nth order Taylor 
expansion around time-tag 𝑡𝑐 [14]. 

𝑝(𝑡) = 𝑎(𝑡) cos𝜑(𝑡) + j𝑎(𝑡) sin 𝜑(𝑡) ≈ ∑ 𝑑𝑖(𝑡 − 𝑡𝑐)
𝑖𝑛

𝑖=0 (3) 

where 𝑑𝑖 ≝ 𝑐𝑖 + j𝑠𝑖 =
1

𝑖!
𝑝(𝑖)(𝑡). Therefore, 

𝑥(𝑡) = 𝑎(𝑡) cos 𝜑(𝑡) cos(2𝜋𝑓0𝑡 )−𝑎(𝑡) sin𝜑(𝑡) sin(2𝜋𝑓0𝑡 ) 

= 𝐑𝐞[𝑝(𝑡)] cos(2𝜋𝑓0𝑡 ) − 𝐈𝐦[𝑝(𝑡)] sin(2𝜋𝑓0𝑡 ) (4) 

where Re[𝑝(𝑡)] = (𝑝 + 𝑝̂)/2 , Im[𝑝(𝑡)] = (𝑝 − 𝑝̂)/2 . 𝑝̂ 
denotes the conjugate of 𝑝. Therefore, 

 𝐑𝐞[𝑝(𝑡)] ≈
1

2
[∑ 𝑑𝑖(𝑡 − 𝑡𝑐)

𝑖𝑛
𝑖=0 + ∑ 𝑑𝑖̂(𝑡 − 𝑡𝑐)

𝑖𝑛
𝑖=0 ](4a) 

 𝐈𝐦[𝑝(𝑡)] ≈
1

2
[∑ 𝑑𝑖(𝑡 − 𝑡𝑐)

𝑖𝑛
𝑖=0 − ∑ 𝑑𝑖̂(𝑡 − 𝑡𝑐)

𝑖𝑛
𝑖=0 ](4b) 

Simplify (4a) and (4b) with 𝑑𝑖 = 𝑐𝑖 + j𝑠𝑖 , we have, 

 𝐑𝐞[𝑝(𝑡)] ≈ ∑ 𝑐𝑖(𝑡 − 𝑡𝑐)
𝑖𝑛

𝑖=0 ≝ 𝑞(𝑡) (5a) 

 𝐈𝐦[𝑝(𝑡)] ≈ ∑ 𝑠𝑖(𝑡 − 𝑡𝑐)
𝑖𝑛

𝑖=0 ≝ 𝑟(𝑡) (5a) 

Replacing the real and imaginary parts of p(t) in (4), 
original signal can be represented as, 

 𝑥(𝑡) = 𝑞(𝑡) cos(2𝜋𝑓0𝑡) − 𝑟(𝑡) sin(2𝜋𝑓0𝑡) (6) 

which corresponds to the method in [14]. Therefore, fitting of 
dynamic phasor and the envelopes of transient waveform are 
essentially interchangeable through the relationship di=ci+jsi. 

III. SYNCHROPHASOR ESITMAITON USING  
MODIFIED HYBRID MEHTOD 

Synchrophasor measurement algorithm is a module whose 
input is an array of samples, and the output only corresponds 
to one time instant. Therefore, the time-tagging of estimation 
results unavoidably affects the accuracy of algorithm. 

In hybrid method, Taylor polynomials are used to 
approximate the signal first. To improve the performance of 
time domain method, DFT is plugged in to alleviate noise and 
harmonic distortion. Since DFT is essentially an averaging 
calculation, time-tagging at the center of window, denoted by 
tc, will yield the most accurate result. Therefore, expanding the 
signal at tc = NΔt /2, where N is an even number of samples in 
a window, Δt is the sampling interval. We have DFT for the 
first window where indices are from 0 to N-1, 

 𝑋0̇ = ∑ 𝑥(𝑘∆𝑡)𝑒−𝑖
2𝜋

𝑁
𝑘𝑁−1

𝑘=0  (8) 

where 𝑥(𝑘∆𝑡) = 𝑞(𝑘∆𝑡) cos (
2𝜋𝑘

𝑁
) − 𝑟(𝑘∆𝑡) sin (

2𝜋𝑘

𝑁
). 

Expanding 𝑞(𝑘∆𝑡)  and 𝑟(𝑘∆𝑡)  at 𝑡𝑐 =
𝑁

2
∆𝑡  using second 

order Taylor polynomials, we have, 

𝑞(𝑘∆𝑡) ≈ 𝑐0 + 𝑐1(𝑘∆𝑡 − 𝑡𝑐) + 𝑐2(𝑘∆𝑡 − 𝑡𝑐)
2 

 = 𝑐0 + 𝑐1 (𝑘 −
𝑁

2
) ∆𝑡 + 𝑐2 (𝑘 −

𝑁

2
)

2

∆𝑡2 (9a) 

𝑟(𝑘∆𝑡) ≈ 𝑠0 + 𝑠1(𝑘∆𝑡 − 𝑡𝑐) + 𝑠2(𝑘∆𝑡 − 𝑡𝑐)
2 

 = 𝑠0 + 𝑠1 (𝑘 −
𝑁

2
) ∆𝑡 + 𝑠2 (𝑘 −

𝑁

2
)

2

∆𝑡2 (9b) 

Substitute 𝑥(𝑘∆𝑡) with (9a) and (9b), and separate real and 

imaginary parts of 𝑋0̇. We have, 

𝑋0,𝑅𝑒 = 𝐑𝐞[𝑋0̇] 

= ∑ [𝑐0 + 𝑐1 (𝑘 −
𝑁

2
) ∆𝑡 + 𝑐2 (𝑘 −

𝑁

2
)

2

∆𝑡2]𝑁−1
𝑘=0 cos2 2𝜋𝑘

𝑁
 (10a) 

−∑ [𝑠0 + 𝑠1 (𝑘 −
𝑁

2
) ∆𝑡 + 𝑠2 (𝑘 −

𝑁

2
)

2

∆𝑡2]𝑁−1
𝑘=0 sin

2𝜋𝑘

𝑁
cos

2𝜋𝑘

𝑁
  

𝑋0,𝐼𝑚 = 𝐈𝐦[𝑋0̇] 

= −∑ [𝑐0 + 𝑐1 (𝑘 −
𝑁

2
) ∆𝑡 + 𝑐2 (𝑘 −

𝑁

2
)

2

∆𝑡2]𝑁−1
𝑘=0 sin

2𝜋𝑘

𝑁
cos

2𝜋𝑘

𝑁
  

+∑ [𝑠0 + 𝑠1 (𝑘 −
𝑁

2
) ∆𝑡 + 𝑠2 (𝑘 −

𝑁

2
)

2

∆𝑡2]𝑁−1
𝑘=0 sin2 2𝜋𝑘

𝑁
 (10b) 

Organize (10) in the form of parameters of ci and si,, as 
shown in (11) on the top of next page. 

Thus we have two knowns (real and imaginary parts of 
DFT) and six unknowns (ci and si). In order to balance the 
number of knowns and unknowns, three equally spaced 
windows are utilized, and the original signal is approximated 
at tc, tc+Δt, tc+2Δt, respectively. The assumption is that the 
fitting coefficients do not change when utilizing data from 
moving windows, which is reasonable since the typical 
sampling rate for a PMU is 2880Hz (48 samples/cycle) 
whereas the transient of envelopes is a few Hz, thus the fitting 
error is negligible. Use of moving windows is shown in Figure 
1. Mechanism of hybrid method is illustrated in Figure 2. 



𝑋0,𝑅𝑒 = 𝑐0 ∑ cos2 2𝜋𝑘

𝑁

𝑁−1
𝑘=0 + 𝑐1 ∑ (𝑘 −

𝑁

2
) ∆𝑡 ∙ cos2 2𝜋𝑘

𝑁

𝑁−1
𝑘=0 + 𝑐2 ∑ (𝑘 −

𝑁

2
)

2

∆𝑡2 ∙ cos2 2𝜋𝑘

𝑁

𝑁−1
𝑘=0 − 𝑠0 ∑ sin

2𝜋𝑘

𝑁
cos

2𝜋𝑘

𝑁

𝑁−1
𝑘=0   

−𝑠1 ∑ (𝑘 −
𝑁

2
) ∆𝑡 ∙ sin

2𝜋𝑘

𝑁
cos

2𝜋𝑘

𝑁

𝑁−1
𝑘=0 − 𝑠2 ∑ (𝑘 −

𝑁

2
)

2

∆𝑡2 ∙ sin
2𝜋𝑘

𝑁
cos

2𝜋𝑘

𝑁

𝑁−1
𝑘=0 = 𝛼0

0𝑐0 + 𝛼1
0𝑐1 + 𝛼2

0𝑐1 + 𝜆0
0𝑠0 + 𝜆1

0𝑠1 + 𝜆2
0𝑠1 (11a) 

𝑋0,𝐼𝑚 = 𝑐0 ∑ sin
2𝜋𝑘

𝑁
cos

2𝜋𝑘

𝑁

𝑁−1
𝑘=0 − 𝑐1 ∑ (𝑘 −

𝑁

2
) ∆𝑡 ∙ sin

2𝜋𝑘

𝑁
cos

2𝜋𝑘

𝑁

𝑁−1
𝑘=0 − 𝑐2 ∑ (𝑘 −

𝑁

2
)

2

∆𝑡2 ∙ sin
2𝜋𝑘

𝑁
cos

2𝜋𝑘

𝑁

𝑁−1
𝑘=0 + 𝑠0 ∑ cos2 2𝜋𝑘

𝑁

𝑁−1
𝑘=0   

+𝑠1 ∑ (𝑘 −
𝑁

2
) ∆𝑡 ∙𝑁−1

𝑘=0 cos2 2𝜋𝑘

𝑁
+ 𝑠2 ∑ (𝑘 −

𝑁

2
)

2

∆𝑡2 ∙𝑁−1
𝑘=0 cos2 2𝜋𝑘

𝑁
= 𝜆0

0𝑐0 + 𝜆1
0𝑐1 + 𝜆2

0𝑐1 + 𝛽0
0𝑠0 + 𝛽1

0𝑠1 + 𝛽2
0𝑠1 (11b) 

 

For the second window, where the sample indices are from 
1 to N, and we have DFT, 

𝑋1̇ = ∑ 𝑥[(𝑘 + 1)∆𝑡]𝑒−𝑖
2𝜋

𝑁
𝑘𝑁−1

𝑘=0 = ∑ 𝑥(𝑘∆𝑡)𝑒−𝑖
2𝜋

𝑁
(𝑘−1)𝑁

𝑘=1 (12) 

Or equivalently, 

 𝑋1̇𝑒
−𝑖

2𝜋

𝑁 = ∑ 𝑥(𝑘∆𝑡)𝑒−𝑖
2𝜋

𝑁
𝑘𝑁

𝑘=1  

Similarly, for the third window, where the sample indices 
are from 2 to N+1, and we have DFT, 

 𝑋1̇𝑒
−𝑖

2𝜋

𝑁
∙2 = ∑ 𝑥(𝑘∆𝑡)𝑒−𝑖

2𝜋

𝑁
𝑘𝑁+1

𝑘=2  (14) 

The rest of the derivation is similar to (10) and (11). Note 
that the left-hand sides of (13) and (14) correspond to 
recursive DFT, where the instant phase angle of sinusoid with 
nominal frequency is considered as the reference angle. 
Recursive DFT is essentially an angle adjustment, which can 
be done conveniently in practice. The right-hand sides of (13) 
and (14) have the same structure as (8), and the only 
difference is the indices of summation, which does not 
increase any computation complexity. Otherwise, as discussed 
in [17], the derived fitting coefficients are irregular and harder 
to be implemented sustainably when higher order Taylor 
expansion needs to be considered. 

 

In general, the fitting coefficients can be computed as 
follows: 

 𝛼𝑚
𝑛 = ∑ (𝑘 −

𝑁

2
)

𝑚

∆𝑡𝑚cos𝑚𝑁+𝑛−1
𝑘=𝑛

2𝜋𝑘

𝑁
 (15a) 

 𝛽𝑚
𝑛 = ∑ (𝑘 −

𝑁

2
)

𝑚

∆𝑡𝑚sin𝑚𝑁+𝑛−1
𝑘=𝑛

2𝜋𝑘

𝑁
 (15b) 

 𝜆𝑚
𝑛 = −∑ (𝑘 −

𝑁

2
)

𝑚

∆𝑡𝑚sin
2𝜋𝑘

𝑁
cos𝑁+𝑛−1

𝑘=𝑛
2𝜋𝑘

𝑁
 (15c) 

where 𝑚, 𝑛 = 0,1,2…, the superscript on coefficient denotes 
the number of windows, and the subscript indicates the order 
of corresponding polynomial. In order to construct a solvable 
matrix equation, max(𝑚) = max (𝑛) needs to be satisfied. 

In the case where max(𝑚) = max(𝑛) = 2 , the matrix 
equation is as follows, 

 

[
 
 
 
 
 
 
 

𝐑𝐞[𝑋0̇]

𝐑𝐞[𝑋1̇𝜃]

𝐑𝐞[𝑋2̇𝜃
2]

𝐈𝐦[𝑋0̇]

𝐈𝐦[𝑋1̇𝜃]

𝐈𝐦[𝑋2̇𝜃
2]]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝛼0

0 𝛼1
0 𝛼2

0

𝛼0
1 𝛼1

1 𝛼2
1

𝛼0
2 𝛼1

2 𝛼2
2

𝜆0
0 𝜆1

0 𝜆2
0

𝜆0
1 𝜆1

1 𝜆2
1

𝜆0
2 𝜆1

2 𝜆2
2

𝜆0
0 𝜆1

0 𝜆2
0

𝜆0
1 𝜆1

1 𝜆2
1

𝜆0
2 𝜆1

2 𝜆2
2

𝛽
0
0 𝛽

1
0 𝛽

2
0

𝛽
0
1 𝛽

1
1 𝛽

2
1

𝛽
0
2 𝛽

1
2 𝛽

2
2
]
 
 
 
 
 
 

[
 
 
 
 
𝑐0

𝑐1
𝑐2

𝑠0
𝑠1

𝑠2]
 
 
 
 

 (16) 

where 𝜃 ≡ 𝑒−𝑖
2𝜋

𝑁  is the rotating factor which does not change 
the amplitude of the phasor and rotate the phase angle 
clockwise by one sampling angle interval. Note that (16) is a 
linear matrix equation, where the matrix on the right-hand side 
is fixed, whose inverse can be calculated and stored 
beforehand. As a result, solving the fitting coefficient is just a 
matrix multiplication. 

Traditionally frequency is calculated using the 
differentiation of consecutive angle values. This method may 
perform well under simulation conditions with noiseless test 
signals. However, when noise is presented in real 
measurements, differentiation will inevitably magnify 
computation uncertainties. Averaging may be applied to 
smooth raw angle estimations to alleviate error caused by 
random fluctuation. However, averaging applies on multiple 
estimation results and thus essentially increases the length of 
data window. This will adversely affect the transient 
performance of the algorithm by adding transient time. 
Moreover, averaging will shift the time-tags of frequency and 
ROCOF estimation, which are originally aligned with 
estimated synchrophasors. As a result, time delays will be 
introduced. In this paper, two matrices are constructed for 
frequency deviation and ROCOF estimation using acquired 
fitting coefficients. 

Taking the derivative of p(t) = a(t)e 
jφ(t)

,  

 𝑝′(𝑡) = 𝑎′(𝑡)𝑒j𝜑(𝑡) + j𝑝(𝑡)𝜑′(𝑡)˘ (17) 

 
Figure 1.  Illustration of Moving Windows 

 

Figure 2.  Mechanism of Modified Hybrid Method 



Separating real part and imaginary part of (17), we have, 

 𝐑𝐞[𝑝′(𝑡)] = 𝑎′(𝑡) cos𝜑(𝑡) − 𝑠(𝑡) 𝜑′(𝑡) = 𝑐1 (18a) 
 𝐈𝐦[𝑝′(𝑡)] = 𝑎′(𝑡) sin𝜑(𝑡) + 𝑐(𝑡) 𝜑′(𝑡) = 𝑠1 (18b) 

Or equivalently,  

 [
𝑐1

𝑠1
] = [

cos𝜑(𝑡) −𝑠0

sin𝜑(𝑡) 𝑐0
] [

𝑎′(𝑡)

𝜑′(𝑡)
] (19) 

Solving (19), we have 𝜑′(𝑡) = 2𝜋∆𝑓(𝑡), the estimation is 
on frequency deviation instead of frequency since recursive 
DFT is used in the calculation of parameters. Therefore, 

 ∆𝑓(𝑡) =
𝜑′(𝑡)

2𝜋
 (20) 

Similarly, ROCOF estimation can be performed. Taking 
the derivative of (17), we have 

𝑝′′(𝑡) = 𝑐2 + j𝑠2 = 𝑎′′(𝑡) 𝑒j𝜑(𝑡) + 𝑎′(𝑡) [𝑒j𝜑(𝑡)j𝜑′(𝑡)] 
 +j[𝑝′(𝑡)𝜑′(𝑡) + 𝑝(𝑡)𝜑′′(𝑡)] (21) 

Separating real part and imaginary part of (21) and 
organize into matrix form, 

[
𝑐2 + 𝑎′(𝑡)𝜑′(𝑡)sin𝜑(𝑡) + 𝑠1𝜑

′(𝑡)

𝑠2 − 𝑎′(𝑡)𝜑′(𝑡)cos𝜑(𝑡) − 𝑐1𝜑
′(𝑡)

] = [
cos𝜑(𝑡) −𝑠0

sin𝜑(𝑡) 𝑐0
] [

𝑎′′(𝑡)

𝜑′′(𝑡)
](22) 

Note that all parameters except 𝑎′′(𝑡)  and 𝜑′′(𝑡)  have 
been calculated in (22). Solving (22) we can acquire 𝜑′′(𝑡). 
Then ROCOF can be achieved by 

 𝑅𝑓(𝑡) =
𝜑′′(𝑡)

2𝜋
 (20) 

As discussed above, estimated values all have the same 
time-tag, which is the center of the first window. 

IV. SIMULATION STUDIES AND ANALYSIS 

A. Test Conditions 
All the tests are performed in MATLAB software. Test 

scenarios are selected from [18], elaborated in Table 1, which 
include both static and dynamic tests. White Gaussian noise 
(WGN) is added to imitate the noise from digitization [19]. 
Sampling frequency is 6kHz. 

TABLE I.  TEST SCENARIOS IN ALGORITHM TESTS 

 
Test Types 

Static 
Tests 

Signal magnitude range Signal frequency range 

Harmonic distortion & 
Out-of-band interference 

Phase angle range 

Dynamic 
Tests 

Amplitude modulation Phase modulation 

Amplitude and phase 
combined modulation 

Frequency ramp 

The proposed algorithm is tested and compared with the 
time domain method in [14] and IEEE standard [18]. In [14], 

a time domain method based on second order Taylor 
polynomial expansion alone is utilized to estimate dynamic 
waveforms. One should note that the method in [14] is 
originally designed for transient signals with slow varying 
envelopes. The performance of the proposed algorithm is also 
tested against the highest accuracy requirements from IEEE 
Standards for each test type, irrespective of the class of PMU. 

Test parameters are specified in Table II. Since 
theoretically modified hybrid method is immune to 
harmonics, therefore, in harmonic tests and out-of-band 
interference test, the system frequency is chosen to be 
60.02Hz, instead of nominal frequency. The selection of 
typical system frequency is based on the observation from 
[20].  

TABLE II.  CONDITIONS AND PARAMETERS OF TEST SIGNALS 

Test Type Test Conditions/Parameters 

Amplitude deviation 10% rated and 120% rated 

Frequency deviation ±5Hz 

Angle deviation ±π rad 

Harmonic and 

out-of-band tests 

System frequency at 60.02Hz, 
10% harmonics up to 50th. 

Frequency ramp test ±1Hz/s frequency ramp 

Modulation test 
10% amplitude and angle 
combined test, modulation 

frequency at 5Hz. 

All test parameters are chosen to represent the most 
adverse conditions. Note that some of the tests, for example, 
amplitude and angle combined test, are not specified in the 
standards, but exert even higher requirement on algorithm 
accuracy. 

B. TVE and Phase Angle Estimation Results and Analysis 
As shown in Table III, the proposed modified hybrid 

method presents excellent performance in static PMU tests 
specified in IEEE standards, while traditional Taylor 
expansion method is susceptible to harmonics and noise. As 
expected from the theoretical derivation, the hybrid method 
excels at harmonic and noise rejection. 

TABLE III.  TVE ESTIMATION ACCURACY 

Test Type IEEE Std. 
Modified 

Hybrid 

Taylor 

Expansion 

Steady-state test 1% 0.05% >10% 

Harmonic test 1% 10-6 >10% 

OOB test 1.3% 10-6 >10% 

Frequency ramp test 1% 0.15% >10% 

Modulation test 3% 0.08% 0.2% 

TABLE IV.  PHASE ANGLE ESTIMATION ACCURACY 

Test Type IEEE 

Std.[note] 

Modified 

Hybrid 

Taylor 

Expansion 

Steady-state test 0.573º 3×10-5 º 5×10-3 º 

Harmonic test 0.573º 5×10-10 º >1º 

OOB test 0.745º 5×10-10 º >1º 

Frequency ramp test 0.573º 1.5×10-5 º 4×10-3 º 

Modulation test 1.719º 8×10-6 º 8×10-4 º 

Note: IEEE does not have separate requirement for phase angle 
estimation, in this Table amplitude estimation is assumed to be 
accurate. 

Conclusion can be drawn from Table IV that the proposed 
method has extraordinary phase angle measurement accuracy. 
This is of particular significance for the Smart Grid, 



especially for the promotion and application of synchrophasor 
technology in distribution networks, where much higher 
phase angle estimation accuracy is desired since the angle 
difference between nodes is typically smaller than 0.1º/mile 
at full load, as compared to tens of degrees in transmission 
systems[7].  

C. Frequency and ROCOF Estimation Results and Analysis 
As can be proved from Table V and Table VI, since 

frequency and ROCOF are derived directly from fitting 
coefficients, the estimation of those quantities has the same 
accuracy level as amplitude and phase angle. Whereas in 
traditional Taylor expansion method, the estimation noise of 
phase angle is magnified through taking derivatives. 

TABLE V.  FREQUENCY ESTIMATION ACCURACY 

Test Type IEEE Std. 
Modified 

Hybrid 

Taylor 

Expansion 

Steady-state test 0.005Hz 4×10-5Hz 0.35Hz 

Harmonic test 0.05Hz 3×10-9Hz >1Hz 

OOB test 0.05Hz 3×10-9Hz >1Hz 

Frequency ramp test 0.01Hz 5×10-4Hz 0.35Hz 

Modulation test 0.06Hz 4×10-4Hz 0.05Hz 

TABLE VI.  ROCOF ESTIMATION ACCURACY 

Test Type IEEE Std. 
Modified 

Hybrid 

Taylor 

Expansion 

Steady-state test 0.1Hz/s 3×10-4Hz/s 

>1Hz/s 
Harmonic test 0.4 Hz/s 8×10-8Hz/s 

OOB test 0.4Hz/s 8×10-8Hz/s 

Frequency ramp test 0.2Hz/s 4×10-4Hz/s 

Modulation test 2Hz/s 5×10-4Hz/s 8Hz/s 

V. CONCLUSION 

In this paper, a modified hybrid method for dynamic 
synchrophasor estimation is presented. The proposed method 
has the merits from both time domain method and Fourier 
method. The conclusions are as follows. 

 The paper proves that the time domain methods that utilize 
curve fitting on dynamic phasor and envelope of transient 
waveforms are theoretically interchangeable. 

 Taylor expansion is used to approximate dynamic 
waveforms. DFT is then performed on the model to 
achieve better frequency domain performance. Frequency 
and ROCOF are derived directly from fitting coefficients, 
avoiding introducing error from differentiation of phase 
angles. 

 By scrutinizing the position for Taylor approximation, the 
original hybrid method in [17] is modified and the 
estimation error is minimized. Polynomial approximation 
is performed at the center of each sample window where 
DFT is the most accurate.  

 Recursive DFT is used to simplify parameter estimation. 
The modified algorithm is adaptable and sustainable when 
higher order of polynomial expansion and digital filter/ 
window function are to be applied. 

 Simulation results confirm that the modified method 
exhibits high accuracy under both static and dynamic 
power system signal input. Higher order polynomials can 
be applied to achieve even higher accuracy. 
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